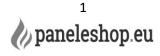

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00


TECHNICAL CATALOG Sandwich panels

(technical data, examples, visualizations, instructions)

- Sandwich panels with polyurethane or polyisocyanurate (PUR/PIR)
- Sandwich panels with mineral wool
- Sandwich panels with polystyrene core

www.paneleshop.eu +421 910 107 878

Contents

Technical catalog

- What to do when the panels come to you? (page: 3 6)
 Packaging, transport, unloading, storage.
- Main technical information about the panels (page: 7 71) General information about the product, the most important advantages, basic types, thicknesses and joints, main technical data, colors, plating, surface treatments, types of profiles offered, fire resistance, loadbearing capacity of panels, acoustic properties, all certificates.
- How are sandwich panels assembled? (page: 72 112) We have summarized in points the most important assembly tips during construction. We drew on twenty European technical catalogs, which are enriched by our own experience. High-quality technical drawings can be found in the second section.
- Cladding elements and their location (page: 113 149)
 Visualizations of the cladding element + placement examples. We offer two types of plating elements: 41 pcs and 33 pcs. The possibility of entering your own parameters.
- Thin-walled structural profiles (page: 150-152) Cold pressed prisons. Thin-walled cages are intended for use primarily as cages for ceilings, roofs and walls of steel halls.
- Self-tapping screws, calots, sealing tapes (page: 153 159)

What to do when the panels come to you?

packaging, transport, unloading, storage

Packing of panels

During the production process, the sandwich panels are packaged together on wooden pallets or on padded polystyrene blocks. Each panel is covered with a protective film on both sides. This foil is only temporary, it must be removed at least one month after production, otherwise it risks vulcanizing and cannot be removed. The number of pieces in the package depends on the type of panels, thickness and length.

(sample of panel packaging)

(sample of panel packaging)

Transport of panels

Panels are transported by truck to the exact location designated by the client, where the panels will be unloaded. The number of pieces in the package depends on the type of panels, thickness and length. The maximum length of the panels up to 13m is recommended, because above 13m, oversized transportation must be ensured, which can increase the price for such a service. Normally, 2-3 layers of packages placed on top of each other in two rows are transported, fixed with the help of tensioning straps. Packages are loaded and unloaded by crane or forklift.

Example: 100mm PIR wall sandwich panel, which is packed in 11 pieces with a length of up to 13m for standard transport.

(demonstration of loading and transporting (demonstration of loading and transporting panels)

panels)

Unloading panels at the construction site

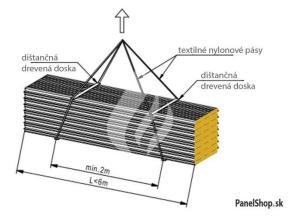
Immediately upon delivery, check that the package is complete and report any discrepancies to the driver. The panels are most often unloaded by crane, forklift, vacuum manipulator or even by hand.

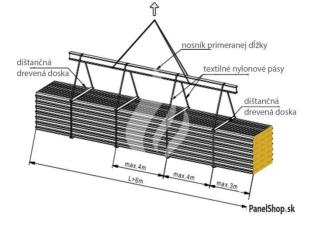
For panels up to 6m long, a forklift is recommended. Over 6m long, two forklifts are used for unloading, a side forklift with a large fork span or a crane with the help of textile nylon belts and wooden boards fixed at several points from the bottom and top of the package together with a cross beam of adequate length. The distance between the strips is a maximum of 4m and the free ends should be shorter than 3m. The wooden boards should have adequate strength, a width of at least 200 mm and a length of approx. 2 cm longer than the package, so as not to damage the panel joints.

Never unload more than one package at a time. The distance of textile strips for panels up to 6 m long must not be less than 2 m. Do not use steel ropes or chains.

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

(example of unloading with forklift)


(example of unloading panels with a forklift truck)



(example of unloading with two forklift)

(example of unloading panels with a side forklift)

(example of unloading panels up to 6m with the help of a crane)

(example of unloading panels over 6m with the help of a crane)

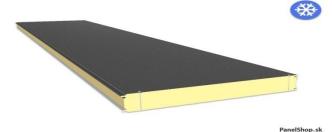
Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

(sample of supporting wooden board)

(sample of the supporting wooden board from the bottom and from the top of the package)

Storage of panels

If the storage period is not longer than one week, there are no special requirements for storing the panels before installation. When storing for more than one week, it is necessary that the panels are stored on a slight slope (min. 2%) using, for example, polystyrene blocks. They must be protected from direct sunlight, rain, wind and pollution in a ventilated place. They can be covered with a protective textile sheet (not plastic foil, due to UV radiation). The protective film on the external (external) profile of the panel must be removed within 4 weeks, because it can vulcanize and cannot be removed afterwards. The maximum number of stored packages on top of each other is two.


Main technical panel information

colors, plating, profiles, load capacity

The sandwich panel is a hit of the 21st century

The sandwich panel is a hit of the 21st century, everything is slowly being built from it. Everywhere you look, you can see buildings made of panels, such as Tesco, Lidl, Kaufland department stores, industrial parks and zones, various industrial warehouses, garages, workshops, extensions, houses, containers, car repair shops, car showrooms, shops, production halls, freezers and agricultural halls. All these modern buildings are made of sandwich panels (pur/pir, mineral wool, polystyrene core), which have excellent insulating properties and a long service life of over 50 years.

Sandwich panels are prefabricated elements that consist of two facings made of galvanized steel sheet (external and internal) and an insulating core located between them. The insulating cores are either made of hardened polyurethane (PUR), polyisocyanurate foam (PIR), mineral wool or polystyrene. These cores provide high-quality heat and sound insulation with high fire resistance.

The most important advantages of sandwich panels

Excellent insulating properties. The thermal conductivity of panels with polyisocyanurate (PIR) is $\lambda = 0.022$ W/m*K. Mineral wool and polystyrene core have the same $\lambda = 0.040$ W/m*K. These are better values than precast concrete or classic burnt brick.

Excellent protection against weather conditions, water, wind, rain, snow, corrosion and humidity. In order to maintain these properties and appearance, it is necessary to choose the correct surface treatment (from 25µm to 200µm) according to local conditions. An example can be a farm building, where a 35µm surface finish is recommended due to aggressive ammonia from animal excrement.

Quality sound insulation. By choosing the right core, we can achieve perfect sound insulation parameters. The polyurethane panel has a weighted soundproofing value of Rw=26dB, mineral wool has values of Rw=32dB and the polystyrene core has a value of Rw=23dB.

Excellent fire resistance properties. Mineral wool (EI120) has the best fire-resistant properties, then polyisocyanurate core (EI30) and polystyrene core (EI15) has the weakest properties.


Simple and quick installation, low construction costs. Faster and easier construction than with brick buildings. No construction adhesives, nets, plasters.

They can be applied to all buildings with a steel, wooden, concrete or reinforced concrete structure. The panels are mounted vertically or horizontally indoors, outdoors, on ceiling and roof skeleton structures.

Good strength parameters. Roof panels can withstand snow and wind loads depending on their thickness and climatic zone with a support span of more than 3m. In most cases, wall panels can be used with support spans of up to 6m. The result is real savings in terms of the load-bearing structure and therefore the total cost of the entire building.

Modern aesthetic appearance. Choice of colors (more than 41), types of plating (9 types), types (PUR/PIR, EPS, Mineral wool), thickness (40-250mm), length from 2-18m.

Complete environmental safety, long service life - service life over 50 years.

In short

- *PIR/PUR panels are the most used and have excellent insulating properties*
- *Minerals are the second most used and their main advantage is fire resistance and reaction to fire*
- EPS panels are the third most used and their main advantage is the low price

Large range of usability

- Storage space
- Storage space with administration
- Industrial or production warehouse
- Storage space with a shop
- Commercial space
- Car showroom, car service, MOT
- Garage space
- Agricultural warehouse or hall
- Refrigerated or frozen storage
- Storage space with living area
- Family house
- Gyms, swimming pools, water parks
- Food warehouse tesco, lidl, kaufland
- Department stores Aupark, StopShop, Mercury market
- Buildings in coastal areas and polluted industrial conditions

(example of a building made of sandwich panels)

Basic types, thicknesses and joints

				Kind o	f core				
		PUR	/PIR	Polystyre		Mineral wool			
				(EF	,				
			e of rigid	core m			of mineral		
		polyisoc	•	expar		wo	ool		
		foa		polyst					
		thickness	modular	thickness	modular	thickness	modular		
		[mm]	width	[mm]	width	[mm]	width		
			[mm]		[mm]		[mm]		
				40					
				40 50		40			
				60		60			
		40		75		80			
		60		80		100			
	Wall panel	80		100		120			
1777	with visible	100	1150, 1100	120	1150	140	1000,		
	joint. It is	120	,1000,1080	125	alebo	150	1100, 1150		
4.5	mounted on	140		140	1155	160	-		
	the wall	160		150		175			
	vertically or	180		160		180			
	horizontally.	200		175		200			
	-			180		230			
				200		250			
				250					

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

	Wall panel with hidden joint. It is mounted on the wall vertically or horizontally.	60 80 100 120	1000, 1080	-?	-?	80 100 120 150 150 160 180 200	1000	
	Freezer panel with visible joint. It is mounted on the wall vertically or horizontally.	120 140 160 180 200 220	1000, 1100,1150, 1080	-?	-?	-?	-?	
	Roof panel	40 60 80 100 120 140 160	1000, 1080	60 75 80 100 120 125 140 150 160 175 200 250	1100,1080 1100,1080	60 80 100 120 140 150 160 175 200 230	1000,1080	
core density	[kg / m3]	4	.0	15		250 90,10		
thermal conducti K]	ermal conductivity λ [W / m *		022	0,0	40	0,0	940	
specific coefficie	typical fire resistance class specific coefficient of acoustic resistance Rw		/EI 30 6	EI 24		EI 120 32		

Labeling our panels

Wall	PIR	100.1100	E.SP25/9006 Microlinear 0.5	I.SP15/9006 Linear 0.4
Panel	Type of	Thickness.	External. color, profile type,	Internal color, profile type,
type	core	Modular width	sheet thickness	sheet thickness

The standard labeling of sandwich panels in the panel shop has the following format:

Labeling is defined as follows:

Panel type – wall, facade, roof, wall freezer, wall farm, roof farm, facade farm

Type of core – PIR/PUR polyisocyanurate/polyurethane, EPS polystyrene core, mineral wool

Hrúbka a modulárna šírka (efektívna) – 40-250mm, 1150/1100/1000/1155/1080

Externý profil – externý, typ farby v RAL odtieni, typ profilu, hrúbka plechu 0,4/0,5/0,6/0,7

Interný profil – interný, typ farby v RAL odtieni, typ profilu, hrúbka plechu 0,4/0,5/0,6/0,7

Main technical data about PUR polyurethane and PIR polyisoquinurate panels

Main advantages

- Quality insulation capabilities. Thermal conductivity has a value of λ = 0.022 W/m*K
- Quality soundproofing properties. The coefficient of acoustic resistance is Rw= 25-27 dB
- PIR panels are characterized by very good fire resistance. Their classes are from EI 15/EI 30-60

- Panel joints guarantee perfect impermeability against water, air and moisture.
- Three types of wall panels and one type of roof panels are offered
- Core density is 40 kg / m3
- They can be combined with other types of panels

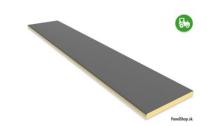
Wall panels are available in three types:

• **Standard wall panel.** Thickness range: 40 to 200 mm.

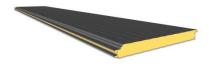
Suitable for walls that are installed vertically or horizontally. Fastening to the structure using screws through the panels with a visible joint.

PanelShop.sk (Standard wall PIR/PUR panel)

• Standard wall panel / farmhouse. Thickness range: 40 to 120 mm. Possibility of


thicker sheet metal and thicker paint finish from 35-120µm

Suitable for walls that are installed vertically or horizontally. Fastening to the structure using screws through the panels with a visible joint.


• Facade wall panel with hidden joint.

Thickness range: 60 to 120 mm. Suitable for walls that are installed vertically or horizontally.

Fastening to the structure using screws inside the panel joint. These panels form a smooth facade without visible joints.

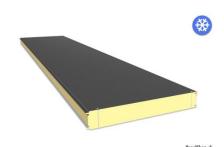
(Standard wall PIR/PUR panel / farm)

(Facade wall PIR/PUR panel)

• A coodstorage panel with a visible joint and with the reverse direction of heat flow.

Unlike standard panels, their joints do not have soft and aluminum gaskets that could form a thermal bridge.

To eliminate heat flow, the core has a tongue and groove joint. Thickness range: 120 to 220 mm. Suitable for the walls of cold stores and freezers, as well as for ceilings and soffits. Panels should be installed outside building structures.

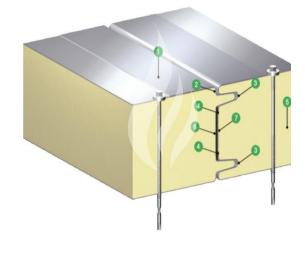

Roof panels are available in one type:

• **Roof panel**. Suitable for sloping roofs with a small and medium angle of inclination. These panels have a trapezoidal outer profile. Thickness range: 60 to 160 mm. On request, the roof panels can be made with an overlapping cut-out, which allows longitudinal installation. The cutout can be left- or right-sided.

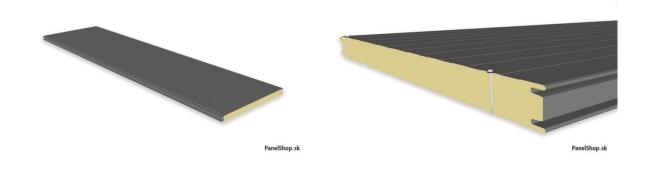
• **Roof panel / farm.** Suitable for sloping roofs with a small and medium angle of inclination. These panels have a trapezoidal outer profile. Thickness range: 60 to 160 mm.

On request, the roof panels can be made with an overlapping cut-out, which allows longitudinal installation. The cutout can be left- or right-sided.

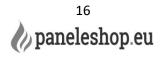
The possibility of using thicker sheet metal and thicker paint surface treatment from 35-120µm


(Refrigerator wall PIR/PUR panel)

Standard wall PUR/PIR sandwich panel


with polyurethane or polyisocyanurate core - visible joint

 Galvanized steel profile
 Protective surface treatment
 The double panel lock guarantees the best fire resistance properties.
 Profiled edges facilitate assembly and ensure proper thermal insulation performance.
 Core made of rigid self-extinguishing PIR foam without freons with very good thermal insulation properties.
 Rigid core of polyurethane or self-extinguishing polyisocyanurate
 The protective sealing tape prevents diffusion, infiltration of water and gas, and penetration of steam into the insulating core.


Suitable for the construction of external and internal walls of industrial buildings: production halls, warehouses, trade halls, shopping centers, agricultural facilities. Vertical or horizontal installation. PIR core - hard polyisocyanurate foam, thermal conductivity values λ = 0.022 W / m * K, improved fire resistance and density ρ = 40 ± 3 kg / m3.

The most used type of sandwich panel. The thickness of the plating can be from 0.4mm to 0.7mm.

Table of important technical data - standard wall panel

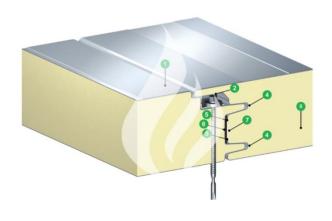
			Mech	anical pro	perties				
thickness	40	60	80	100	120	140	160	180	200
modular width				115	50, 1000, 11	.00			
[mm]									
overall width				modulá	rna šírka -	+ 18 mm			
[mm]									
length [mm]				20	000 - 18000	0*			
Weight 0,5 / 0,4 [kg / m2]	9,0	9,8	10,6	11,4	12,2	13,0	13,8	14,6	15,4
Weight 0,5 / 0,5 [kg / m2]	9,8	10,6	11,4	12,2	13,0	13,8	14,6	15,4	16,2
Profile (external)		smooth, li	near, groo	ve, microli	near, mici	rowave, i	microgr	oove, clea	rline
Profile				linear.	smooth, g	groove			
(internal)					, <u>,</u>	-			
, <i>,</i> ,			Ins	sulating at	oility				
U PIR/PIR+	0,57	0,37	0,27	0,22	0,18	0,16	0,14	0,12	0,11
[W/m2K]	-								
·			F	ire proper	ties				
fire resistance PIR	-	EI 15	EI 15	EI 30	EI 30	EI 30	EI 30	EI 30	EI 30
PIR response to fire		B-s2	2, d0	1			B-s1	, d0	
fire spread					NRO				
			Aco	ustic prop	erties				
acoustic resistance									
coefficient:									
Rw [dB]					25				
RA1 [dB]					23				
RA2 [dB]					20				
acoustic absorption					0,15				
coefficient aw				Tesnosť					
air					8388, C = (1 0116			
permeability:				11 – 0,	0300, C - (5,0110			
pressure					000 0 0	0071			
air permeability: suction				n = 1,1	1072, C = 0	,0074			
resistance to			Class A	- absolute	e imperme	ability a	t 1200 P	а	
heavy rain									

Facade wall PUR/PIR sandwich panel

with polyurethane or polyisocyanurate core - hidden joint

Galvanized steel profile.
 A hidden joint that gives the facade a uniform appearance.

3. Protective surface treatment

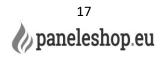

4. The double panel lock guarantees the best fire resistance properties.

5. Profiled edges facilitate assembly and ensure proper thermal insulation performance.

6. The polyurethane seal maintains the correct thermal insulation strength and tightness of the joint - applied during production.

7. The protective sealing tape prevents diffusion, infiltration of water and gas, and penetration of steam into the insulating core.

8. Core made of rigid self-extinguishing PIR foam without freons with very good thermal insulation properties



Suitable for the construction of external and internal walls of industrial buildings: production halls, warehouses, trade halls, shopping centers, agricultural facilities. Vertical or horizontal installation. PIR core - hard polyisocyanurate foam, thermal conductivity values λ = 0.022 W / m * K, improved fire resistance and density ρ = 40 ± 3 kg / m3.

Aesthetic type of sandwich panel. The thickness of the plating can be from 0.4mm to 0.7mm.

Table of important technical data - facade wall panel

	Mechanical properties											
Thickness	60	60 80 100 12										
Modular width [mm]	1000, 1080											
Overall width [mm]		modular widt	th + 18 mm									
Length [mm]		2000 - 18000*										
Weight 0,5 / 0,4 [kg / m2]	10,0	10,8	11,6	12,4								
Weight 0,5 / 0,5 [kg / m2]	10,9	11,7	12,5	13,3								

Profile (external)	smooth, linear, groove, microlinear, microwave, microgroove, clearline										
Profile (internal)	linear, smooth, groove										
	Insulatin	g ability									
U PIR/PIR+ [W/m2K]	0,42 0,29 0,22 0,19										
Požiarne vlastnosti											
fire resistance PIR	-	EI 15	EI 1	5							
PIR response to fire		B-s2, 0	d0								
fire spread		NRC)								
	Acoustic properties										
acoustic resistance coefficient:											
Rw [dB]		26									
RA1 [dB]		23									
RA2 [dB]		21									
acoustic absorption coefficient		0,15									
aw											
	Tight	ness									
air permeability: pressure		n = 0,7578, C	= 0,0335								
air permeability: suction		n = 0,7778, C	= 0,0115								
resistance to heavy rain	Clas	s A - absolute imper	meability at 1200	Pa							
The panels are manufact	ured in accordance	with PN-EN 14509: 201	3 and are marked w	ith							

Refrigeration PUR/PIR sandwich panel

with polyurethane or polyisocyanurate core - hidden joint

1. Galvanized steel unique profile

2. Seal applied during production (optional).

3. Protective surface treatment

4. Profiled edges facilitate assembly and ensure proper thermal insulation performance

5. The double panel lock guarantees the best fire resistance properties.

6. The labyrinth joint eliminates the thermal bridge

7. Core made of rigid self-extinguishing PIR foam without

freons with very good thermal insulation properties

Suitable for external and internal walls, as well as for ceilings and soffits of cold stores and freezer rooms. These panels should be installed outside the building structure.

PIR core - hard polyisocyanurate foam, thermal conductivity values $\lambda = 0.022$ W / m * K, improved anti-fire properties. Density $\rho = 40 \pm 3$ kg / m3. Vertical or horizontal installation. The thickness of the plating can be from 0.5mm to 0.7mm.

	M	echanica	l properti	ies						
Thickness	120	140	160	180	200	220				
Modular width [mm]]	1000, 1100	, 1150, 1080					
Overall width [mm]			mo	dulárna š	irka + 18 mm					
Length [mm]				2000 -	18000					
Weight 0,5 / 0,4 [kg / m2]	12,2	13,0	13,8	14,6	15,4	16,2				
Weight 0,5 / 0,5 [kg / m2]	13,0	13,8	14,6	15,4	16,2	17,0				
Profile (external)	smooth, linear, groove, microlinear, microwave, microgroove, clearline									
Profile (internal)			li	near, smo	oth, groove					
	Insulatin	g ability	-							
U PIR/PIR+ [W/m2K]	0,18	0,16	0,14	0,12	0,11	0,10				
	Fire pro	perties								
Fire resistance PIR	EI 30	EI 30	EI 30	EI 30	EI30/EI60***	EI30/EI60***				
PIR response to fire				B-s	1, d0					
Fire spread					RO					
Acoustic resistance coefficient:		Acoustic	propertie	S						
Rw [dB]					27					
RA1 [dB]					24					
RA2 [dB]					22					
Acoustic absorption coefficient				U,	15					
۵W		Tich	tness							
Air permeability: pressure		Tigli		n = 11083	C = 0,0022					
Air permeability: suction					C = 0,0022					
Resistance to heavy rain		Cla			ermeability at 120	0 Pa				
The panels are manufac	<i>tured in ac</i>									
-					ery 150 mm					

Table of important technical data - refrigeration panel

Roof PUR/PIR sandwich panel

with polyurethane or polyisocyanurate core - visible joint

1. Galvanized steel unique profile.

2. Protective surface treatment.

3. The polyurethane seal maintains the correct thermal insulation strength and tightness of the joint - applied during production.

4. Chamber preventing capillary action.

5. Core made of rigid self-extinguishing PIR foam without freons with very good thermal insulation properties.

6. Profiled edges facilitate assembly and ensure proper thermal insulation performance.

7. The protective sealing tape prevents diffusion, infiltration of water and gas, and penetration of steaminto the insulating core.

8. Straight bottom joint.

Suitable for the construction of industrial buildings: production halls, warehouses, commercial halls, shopping centers, agricultural facilities. PIR core - hard polyisocyanurate foam, thermal conductivity values $\lambda = 0.022$ W / m * K, improved fire resistance and density $\rho = 40 \pm 3$ kg / m3. The thickness of the plating can be from 0.4mm to 0.7mm.

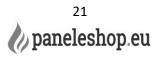
Table of important technical data - roof panel

	N	lechar	nical pro	perties							
Thickness	60	60 80 100 120 140 160									
Modular width [mm]		1000,1080									
Overall width [mm]		modulárna šírka +74 mm									
Length [mm]	2000 - 18000										
Weight 0,5 / 0,4 [kg / m2]	10,2	11,0	11,8	12,6	13,4	14,2					
Weight 0,5 / 0,5 [kg / m2]	11,1	11,9	12,7	13,5	14,3	15,1					
Profile (external)	T-trapezoid										
Profile (internal)	linear, smooth, groove										
		Insul	lating ab	ility							

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

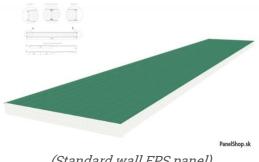

U PIR/PIR+ [W/m2K]	0,35	0,27	0,21	0,18	0,16	0,14						
Fire pro	opertie	es										
Fire resistance PIR	-	-	REI	REI	REI	REI 30						
			30	30	30							
PIR response to fire	B-s2	B-s2, d0 B-s1, d0										
Response to external fire PIR / PIR		BROOF (t1)a Broof(t2) a Broof(t3)										
+												
	-	Acous	tic prope	erties								
Acoustic resistance coefficient:												
Rw [dB]					26							
RA1 [dB]					24							
RA2 [dB]					21							
Acoustic absorption coefficient aw					0,15							
-		Т	ightness	5								
Air permeability: pressure			-	n = 0	,6662, C :	= 0,0177						
Air permeability: suction				n = 1	,2430, C =	= 0,0044						
Resistance to heavy rain			Class A	- absolut	e imperr	neability at 1200 Pa						
The panels are manufac	tured i	n accoi	dance wi	th PN-EN	14509: 201	13 and are marked.						
Minimum roof slope	70/ 6		1	4 - J J ''		······································						

Minimum roof slope > 7% - for panels connected longitudinally or with skylights > 5% - for continuous panels and without skylights


Main technical data about EPS polystyrene panels

Main advantages

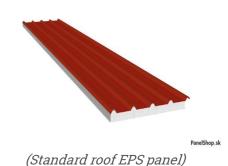
- Fairly good insulating properties. Thermal conductivity has a value of λ = 0.040 W/m*K.
- Satisfactory sound insulation properties. The coefficient of acoustic resistance is Rw= 23-24 dB.
- The fire performance of panels with an EPS core allows the product to be classified as a flame retardant with NRO values.
- Panel joints guarantee perfect impermeability against water, air and moisture.
- One type of wall panels and one type of roof panels are offered
- Core density is 12.5 kg/m3.
- They can be combined with other types of panels.
- They have low weight, thickness from 50-250mm and low price.
- Joints guarantee perfect impermeability against water, air and moisture.


PanelS

Wall panels are available in one type:

• **Standard wall panel.** Thickness range: 50 to 250 mm. Suitable for walls that are installed vertically or horizontally.

Fastening to the structure using screws through the panels with a visible joint. The panels are intended for covering interior, exterior walls and ceiling skeleton structures.



Roof panels are available in one type:

• **Roof panel**. Suitable for sloping roofs with a small and medium angle of inclination. These panels have a trapezoidal outer profile. Thickness range: 60 to 250 mm.

On request, the roof panels can be made with an overlapping cut-out, which allows longitudinal installation. The cutout can be left- or right-sided.

Standard wall EPS sandwich panel

with polystyrene core - visible joint

Galvanized steel unique profile
 Protective surface treatment up to the end of the joint

3. Double panel lock ensures tightness

- **4.** Profiled edges facilitate assembly and ensure proper
- thermal insulation performance
- 5. EPS polystyrene core

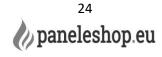
Suitable for the construction of external and internal walls of industrial buildings: production halls, warehouses, trade halls, shopping centers, agricultural facilities. Vertical or horizontal installation.

The core is EPS - expanded polystyrene with thermal conductivity λ = 0.040 W / m * K. Core density ρ = 12.5± 3kg/m3 The cheapest type of sandwich panel. The thickness of the plating can be from 0.4mm to 0.6mm.

Table of important technical data - standard wall panel

			Ме	chani	cal pr	opert	ies							
Thickness	50*	60*	75*	80	100*	120	125*	140	150*	160	175	180	200	250*
Modular width [mm]							115	0,1155						
Overall width [mm]		modular width +18 mm												
Length [mm]	2000 - 13000**													
Weight 0,5 / 0,4 [kg / m2]	8,4	8,4 8,6 8,8 8,9 9,2 9,5 9,6 9,8 9,9 10,1 10,3 10,4 10,7 11,4										11,4		
Weight 0,5 / 0,5 [kg / m2]	9,3	9,4	9,7	9,7	10,0	10,3	10,4	10,6	10,8	10,9	11,2	11,3	11,5	12,3
Profile (external)		smooth, linear, groove, microlinear, microwave, microgroove, clearline												
Profile						lin	ear, sm	ooth, g	roove					
(internal)														
]	insula	iting a	bility	,							
U PIR [W/m2K]	0,74	0,62	0,51	0,46	0,38	0,31	0,31	0,27	0,26	0,24	0,22	0,21	0,20	0,16
				Fire	prope	rties								
Fire resistance		-							EW15/	60, NR0)			
Reaction to fire							D-s2	2/s3, d0						
			Α	coust	ic pro	pertie	es							
			acous	stic res	istance	coeffi	cient:							
Rw [dB]							2	3dB						
RA1 [dB]							2	1dB						
RA2 [dB]							2	0dB						
acoustic absorption coefficient aw								-						

	Tightness
Air permeability	≤ 1.5 m3 / h * m2 at a pressure difference of 50 Pa
Resistance to heavy rain	Class A - absolute impermeability at 1200 Pa
* AT-15-5340/2014 ap	oplies to sandwich panels with panel thickness: 50, 60, 75, 100, 125, 150, 200, 250 [mm]
	** maximum length depending on the color of the panel
Sandwich pa	anels are manufactured according to technical certificate AT-15-5340-2014 *
Roof EPS sa panel with poly	
visible joint	
 Galvanized steel unique profit Protective surface treatment 	
 Profiled edges facilitate asser 	
thermal insulation performance	
4. Chamber preventing capillary	
*. Chamber preventing capillar	


The panels are intended for cladding roof skeleton structures: industrial buildings, production halls, warehouses, shopping halls, shopping centers, agricultural facilities.

Minimum roof slope > 7% - for panels. connected longitudinally or with roof skylights. > 5% - for continuous panels and without skylights. The core is EPS - expanded polystyrene with thermal conductivity $\lambda = 0.040$ W/m*K. Core density $\rho = 12.5 \pm 3$ kg/m3. The cheapest type of sandwich panel. The sheet thickness can be from 0.4mm to 0.6mm. Panel thicknesses are from 60-250mm.

Table of important technical data - roof panel

5. EPS polystyrene core

		Me	chani	cal pro	operti	es						
Thickness	60*	75*	80	100*	120	125*	140	150*	160	175	200*	250*
Modular width [mm]	1080, 1100											
Total width [mm]					mo	dular w	ridth +'	74 mm				
Length [mm]						2000 -	- 15000	**				
Weight 0,5 / 0,4 [kg / m2]	8,8	9,0	9,1	9,4	9,7	9,7	10,0	10,2	10,3	10,5	10,9	11,7
Weight 0,5 / 0,5 [kg / m2]	9,7	9,9	10,0	10,3	10,6	10,7	10,9	11,0	11,2	11,4	11,8	12,5
Profile (external)		L				T-tra	apezoio	d		L		
Profile (internal)	linear, smooth, groove											
			Insula	ting a	bility							

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

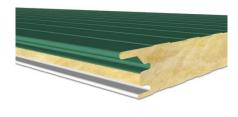
U PJ [W/m2K]	0,61	0,50	0,47	0,38	0,32	0,31	0,28	0,26	0,24	0,22	0,19	0,16
Fire properties												
Fire resistance		RE30										
Fire spread		BROOF (t1)										
	Acoustic properties											
acoustic resistance coefficient:												
Rw [dB]	23dB											
RA1 [dB]	21dB											
RA2 [dB]	20dB											
Acoustic absorption coefficient aw	-											
Tightness												
Air permeability	≤ 1.5 m3 / h * m2 at a pressure difference of 50 Pa											
Resistance to heavy rain	Class A - absolute impermeability at 1200 Pa											
* AT-15-5340/2014 applies to sandwich panels with panel thickness: 50, 60, 75, 100, 125, 150, 200, 250 [mm]												
** maximum length depending on the color of the panel.												
Sandwich panels are manufactured according to technical certificate AT-15-5340-2014 *												

Main technical data about mineral wool panels

Main advantages

• Fairly good insulating properties. Thermal conductivity has a value of λ = 0.040 W/m*K.

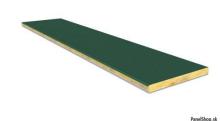
• Very good soundproofing properties. The coefficient of acoustic resistance is Rw= 32 dB. Acoustic absorption αw = 0.15.


• The best fire properties among all types of panels. The product is classified as A2 non-flammable. Fire resistance reaches EI 120.

• Panel joints guarantee perfect impermeability against water, air and moisture.

• Two types of wall panels and one type of roof panels are offered.

- Core density is from 90-110 kg/m3.
- They can be combined with other types of panels.


• Thicknesses from 60-200mm.



Wall panels are available in two types:

• Standard wall panel. Thickness range: 50 to 250 mm. Suitable for walls that are installed vertically or horizontally.

Fastening to the structure using screws through the panels with a visible joint. The

panels are intended for covering interior, exterior walls and ceiling skeleton structures.

• Facade wall panel with hidden joints. Thickness range: 80 to 200 mm. Suitable for walls that are installed vertically or horizontally.

Fastening to the structure using screws inside the panel joint. These panels form a smooth facade without visible joints. (Standard mineral wool wall panel)

(Facade wall panel made of mineral wool)

Roof panels are available in one type:

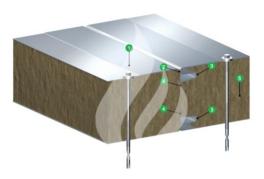
• **Roof panel** made of mineral wool. Suitable for sloping roofs with a small and medium angle of inclination. These panels have a trapezoidal outer profile. Thickness range: 60 to 250 mm.

On request, the roof panels can be made with an overlapping cut-out, which allows longitudinal installation. The cutout can be left- or right-sided.

Standard wall sandwich panel made of mineral wool

mineral core - visible joint

1. Galvanized steel unique profile.


2. Protective surface treatment.

3. The double panel lock guarantees the best fire resistance

properties. 4. Profiled edges facilitate assembly and ensure proper thermal

insulation performance.

5. Core made of hard non-flammable mineral wool (MWF).

Suitable for the construction of external and internal walls of industrial buildings: production halls, warehouses, trade halls, shopping centers, agricultural facilities. Vertical or horizontal installation.

The core is MWF – hard mineral wool with thermal conductivity $\lambda = 0.040$ W/m*K. Core density $\rho = 90-110 \pm 3$ kg/m3. The best fire-fighting properties. The thickness of the plating can be from 0.5mm to 0.6mm.

Table of important technical data - standard wall panel

	1	Mechan	ical pro	perties	;				
Thickness	60	80	100	120	140	150	160	175	200
Modular width [mm]		1100, 1150							
Overall width [mm]		modular width +18 mm							
Length [mm]					2000 -	15000*			
Weight 0,5 / 0,5 [kg / m2]	15,4	17,6	19,8	22,0	24,2	25,3	26,4	28,0	30,8
Weight 0,5 / 0,6 [kg / m2]	16,2	18,4	20,6	22,8	25,0	26,1	27,2	28,9	31,6
Weight 0,6 / 0,6 [kg / m2]	17,1	19,3	21,5	23,7	25,9	27,0	28,1	29,8	32,5
Profile (external)									e, clearline
Profile (internal)		linear, smooth, groove							
		Insula	ating al	oility					
U PIR [W/m2K]	0,64	0,48	0,39	0,33	0,28	0,26	0,23	0,22	0,20
	Fire properties								
Fire resistance	-	- EI 45 EI 60 EI 120							
Reaction to fire	A2-s1, d0								

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

Fire spread NRO								
Acoustic properties								
	Acoustic resistance coefficient:							
Rw [dB]	31							
RA1 [dB] 30								
RA2 [dB]	28							
coustic absorption coefficient aw 0,15								
	Tightness							
Air permeability: pressure n = 0,8388, C = 0,0116								
Air permeability: suction n = 1,1072, C = 0,0074								
Air permeability	Absolute impermeability at a pressure difference of -50 / + 50 Pa							
Resistance to heavy rain Class A - absolute impermeability at 1200 Pa								
* maximu	m length depending on the color of the panel							
	values, instructions regarding the placement of supports are set							

The panels are manufactured in accordance with PN-EN 14509: 2013 and are marked with

Facade wall sandwich panel made of mineral wool

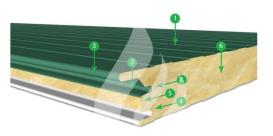
minerálne jadro – skrytý spoj

1. Galvanized steel profile.

2. A hidden joint that gives the facade a uniform appearance.

3. Protective surface treatment.

4. The double panel lock guarantees the best fire resistance properties.


5. Profiled edges facilitate assembly and ensure proper

thermal insulation performance.

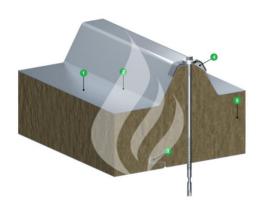
6. Core made of hard non-flammable mineral wool (MWF).

Suitable for the construction of external and internal walls of industrial buildings: production halls, warehouses, trade halls, shopping centers, agricultural facilities. Vertical or horizontal installation. MWF core - hard mineral wool, thermal conductivity values λ = 0.040 W/m*K, best fire resistance and density

 ρ = 110 ± 3 kg / m3. Aesthetic type of sandwich panel. The sheeting thickness can be from 0.5mm to 0.7mm. Panel thicknesses from 80-200mm.

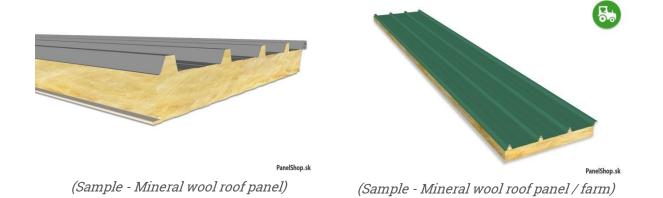
Table of important technical data - facade wall panel

	Mee	chanical	propertie	es				
Thickness	80	100	120	150	160	180	200	
Modular width [mm]	1000, 1050							
Total width [mm]	modular width +50 mm							
Length [mm]		2500 - 15000*						
Weight 0,5 / 0,5 [kg / m2]	17,79	19,80	21,90	25,01	26,10	28,20	30,30	
Profile (external)								
Profil (interný)				inear, smo	ooth, groov	ve		
	I	nsulating	g ability					
U PIR [W/m2K]	0,48	0,38	0,32	0,26	0,24	0,22	0,20	
		Fire prop	perties					
Fire resistance	- EI30 EI60							
Reaction to fire	A2-s2.d0							
Fire spread	NRO*							
	Ac	coustic p	roperties	1				
	acousti	ic resistan	ce coeffic	ient:				
Rw [dB]	Rw [dB] 31							
RA1 [dB]		30						
RA2 [dB]					28			
acoustic absorption coefficient aw				0	,15			
		Tightr	ness					
Air permeability: pressure		n = 0,8388, C = 0,0116						
Air permeability: suction	n = 1,1072, C = 0,0074							
Air permeability	Al	Absolute impermeability at a pressure difference of -50 / + 50 Pa						
odolnosť proti silnému dažďu	Class A - absolute impermeability at 1200 Pa							
** Maximum fire resistance	e values, in		s regardin					
The panels are manufactu	ired in acc	ordance w	rith PN-El	N 14509: 20	JI3 and ar	e marked w	rith	


Roof sandwich panel made of mineral wool

mineral core - visible joint

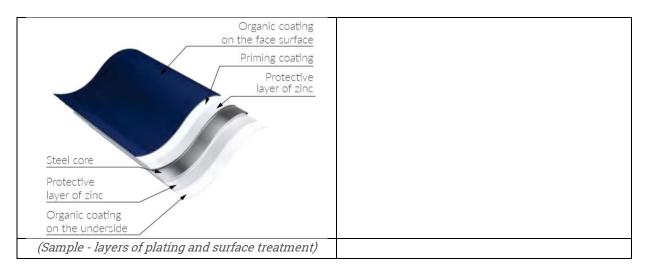
1. Galvanized steel unique profile.


- 2. Protective surface treatment.
- 3. Chamber preventing capillary action.
- **4.** Core made of hard non-flammable mineral wool (MWF).

5. Profiled edges facilitate assembly and ensure proper thermal insulation performance.

The panels are intended for cladding roof skeleton structures: industrial buildings, production halls, warehouses, shopping halls, shopping centers, agricultural facilities.

Minimum roof slope > 7% - for panels. connected longitudinally or with roof skylights. > 5% - for continuous panels and without skylights. The core is MWF – hard mineral wool with thermal conductivity λ = 0.040 W/m*K. Core density ρ = 100-110± 3kg/m3. The best fire-fighting properties. The sheet thickness can be from 0.5mm to 0.7mm. Panel thicknesses are from 60-200mm.


Table of important technical data - Roof panel

]	Mechani	cal prope	erties					
Thickness	60	80	100	120	140	150	160	175	200
modular width [mm]	1000, 1080								
Total width [mm]	modular width +74								
Length [mm]	2500 - 15000*								
Weight 0,5 / 0,5 [kg / m2]	15,6	17,8	20,0	22,2	24,4	25,5	26,6	28,3	31,0
Weight 0,5 / 0,6 [kg / m2	16,5	18,7	20,9	23,1	25,3	26,4	27,5	29,2	31,9
Weight 0,6 / 0,6 [kg / m2	17,4	19,6	21,8	24,0	26,2	27,3	28,4	30,1	32,8
Profile (external)	T-trapezoid						•		
Profile (internal)	linear, smooth, groove								
		Insula	ting abili	ity					
U PIR [W/m2K]	0,63	0,48	0,39	0,33	0,28	0,26	0,25	0,23	0,20
		Fire j	propertie	S					
Fire resistance	- REI90								
Reaction to fire	A2-s1, d0								
Fire spread				BROOF (t1)				
	Acou	istic proj	perties						
А	coustic 1	esistance	coefficie	nt:					
Rw [dB] 32									
RA1 [dB]	31								
RA2 [dB]	28								
acoustic absorption coefficient αw				0,15					
		Tightnes	SS						
Air permeability: pressure n = 0,6662, C = 0,0177									
Air permeability: suction	n = 1,2430, C = 0,0044								
Air permeability									
Resistance to heavy rain Class A - absolute impermeability at 1200 Pa									
* maximum	length de	pending o	on the col	or of the p	anel				
The panels are manufactured	in accord	lance with	h PN-EN 1	4509: 2013	and are i	marked w	rith		

Colors and plating

The sandwich panel consists of two colored, galvanized, profiled steel sheets and an inner core. The profile can also be made of stainless steel. The plating is standardly made of DX51, S220GD, S250GD, S280GD, S320 GD hot-rolled steel sheet with a galvanized inorganic layer of 225 g/m2 zinc or 150 g/m2 aluzinc layer. The last layer is an organic or metallic paint in various types of design, depending on the conditions under which it will be used. During production, the panels are covered with a protective film on both sides. This film protects the layers during transport and assembly. The protective film must be removed within 1 month from the date of manufacture.

Sheet metal has a standard thickness of 0.5/0.4 or 0.5/0.5 mm. By default, it can be 0.6-0.7mm. Surface color treatments can be standard, premium or special. Non-standard plating, premium and special colors are applied in non-standard conditions (farm buildings) because the right choice guarantees trouble-free operation and a long life.

R Distribution of color finishes

- Standard (SP25, SP35, ALUCYNK + Easyfilm®)
- Premium (HDS, HDX, Prisma) and (CESAR PUR 55®)
- Special (FarmCoat, FoodSafe) and (PVDF, PCV(F) "food safe", GALVANIZED STEEL)

A more aggressive environment requires a different surface treatment

The cladding of sandwich panels is exposed to various aggressive factors causing corrosion, discoloration or disruption. Such factors are substances present in the external atmosphere, for example water, humidity and chemical pollution of the environment.

They can also be chemicals generated as a result of activities carried out in the facility. Moisture in gyms, swimming pools and car washes, substances produced by animals such as ammonia, by-products of chemical processes taking place inside the building or aggressive cleaning agents used to maintain high hygiene standards in food processing plants.

In addition, UV radiation can have a destructive effect on the appearance of the plating, which can cause loss of gloss and color. In order to correctly choose the type of lining according to the surrounding conditions, and thus ensure a long and trouble-free use of the panels, users must take into account all the above factors. The influence of external conditions on the service life of sheet metal is determined in the standard EN ISO 12944-2. The standard divides the types of environment into aggressiveness classes based on the rate of degradation of the protective zinc coating. The following table shows the classes of aggression:

Loss of zinc thickness in the first year of use	Examples o	of enviro	onments typical of temperate climates (for informational purposes only)
	Corrosion class according to EN ISO 12944-2		Inside	Outside
C1	very low	< 0.1	Heated buildings with a clean atmosphere, e.g. offices, shops, schools, hotels.	-
C2	low	0.1- 0.7	Unheated buildings with temporary condensation, e.g. Warehouses, gyms.	Slightly polluted environment. Mainly rural areas.
C3	moderate	0.7- 2.1	Rooms with high relative humidity and certain air pollution, e.g. Food plants, laundries, breweries, dairies.	Urban and industrial atmosphere with moderate SO2 pollution. Coastal areas with low salinity.
C4	high	2.1- 4.2	Chemical plants, swimming pools, shipyards	Industrial and coastal areas with moderate salinity.
C5-I	very high (industrial)	4.2- 8.4	Buildings or areas with almost permanent condensation and heavy pollution.	Industrial areas with high relative humidity and an aggressive atmosphere.
С5-М	very high (seaside)	4.2- 8.4		Coastal and island areas with high salinity.

When choosing a surface treatment in terms of UV resistance, the following conditions should be analyzed:

- geographical location (altitude, meters above sea level),
- exposure to sunlight (north south),
- expected duration of operation of the device
- the importance of aesthetic aspects for the given facility (representative buildings, etc.)

Where a higher quality finish is recommended

Agriculture

One of the most specific environments in which panels are installed are buildings where animals are kept. They are very often exposed to animal excrement containing mainly ammonia and its derivatives. Ammonia is a very aggressive substance, and when in contact with it, most layers corrode and deteriorate quickly. For such conditions, we recommend the special **FarmCoat** surface treatment.

Food industry

When it comes to panels and their lining in the food industry, it is necessary that they have no effect on food products in direct contact. Risk factors for the outer layers are the following: the presence of corrosive organic substances, substances of animal origin such as gas or liquid (blood, acids, fats), the effect of more or less aggressive cleaning agents used to maintain a high hygienic standard or substances used in food processing such as acids, vinegar, etc. For this purpose, we recommend two types of coatings from the offer: FarmCoat or FoodSafe.

Freezer spaces, cold stores, food

Similar requirements apply here as in the food industry. It can be assumed that their intensity is lower, but it is amplified by another negative factor, such as low temperature. In most cases, a standard surface treatment is sufficient. However, if the conditions combine in this way, it is worth considering the use of FoodCoat or FoodSafe coatings.

Chemical plants, industrial, seaside and island areas

These environments fall into the aggressiveness class C4 and C5. In such conditions, we recommend using stainless plating, organic surface treatment over 35 µm (e.g. CESAR PUR 55) or inorganic metallic surfaces (e.g. ALUZINC+EASYFILM).

What else affects the choice of the right color

Sandwich panels consist of three layers: the inner lining, the core and the outer lining. In terms of thermal expansion, stiffness, insulating power, the panels are exposed to harmful effects caused by internal and external temperature differences. The plating is much more stressed by expansion and contraction than the core. This causes stress that can damage the panels. These tensile forces are also increased by choosing a dark RAL color because they absorb more radiation. Light colored panels are less sensitive to this phenomenon. To avoid this problem, it is recommended to shorten the length of individual panels or even remove dark colors and replace them with lighter ones.

Another harmful effect is that sandwich panels always work between two environments with different temperatures. The internal temperature is normally +20 °C, while the external temperature is below zero -30 °C. Completely opposite conditions can occur in the case of freezer rooms, where the internal temperature can reach up to -40 °C, while outside + 30 ° C. To avoid this problem, it is also recommended to shorten the length of individual panels and smooth the correct choice of RAL color.


According to the PN-EN 14509: 2013 standard, the temperature of the outer layer (T1) reaches its maximum value in summer and depends on the color and degree of reflection of the surface. T1 values, which are the minimum values for load capacity calculations and are sufficient to calculate the limit conditions of use:

- Very light colors RG = 75-90 T1 = +55°C
- Light colors RG = 40-74 T1 = +65°C
- Dark colors RG= 8-39 T1 = +80°C Where RG is the degree of reflection in relation to magnesium oxide = 100%

All available RAL colors offered

The interior colors of the sandwich panels are available in two basic versions: RAL 9002 and 9010. Other color versions are available on request.

Standard colors

(M=matte 35µm, color must always be confirmed according to availability)

Premium colors (HDS, HDX, Prisma) and (CESAR PUR 55®)

(Color must always be confirmed according to availability)

Special colors (FarmCoat, FoodSafe) and (PVDF, PCV(F) "food safe", GALVANIZED STEEL)

- <u>1</u>				- () , -	/
RAL9010 (FoodSafe,Far mCoat)	AZ- ALUZINOK + EASYFILM)	(Z-ZINC)	STAINLESS STEEL	(TITAN ZINC)

The colors listed in the catalog are for information only. Sheet steel tones may vary depending on the material batch and supplier. Panelsho.sk therefore admits the possibility of color differences between the presented samples and the colors of the actually delivered materials. All objections regarding colors after the completion of the work are not accepted and the company panelshop.sk is exempt from any guarantee regarding differences in shades.

Classification of colors according to relative brightness

It is possible that two kinds of colors classified as the same color according to RAL may differ when compared. Due to the fact that slight differences in the shade of the coatings cannot be prevented.

We recommend using very light and bright colors (color groups I and II). We do not recommend using dark facing wall panels in systems with larger spans and lengths. Dark sandwich panels absorb heat very well and are therefore more susceptible to deformation. For this reason, shorter panel lengths are recommended for dark shades.

- Very light colors RG = 75-90 T1 = +55°C
- Light colors RG = 40-74 T1 = +65°C
- Dark colors RG= 8-39 T1 = +80°C

Where RG is the degree of reflection in relation to magnesium oxide = 100%

Color group / surface RAL colors RG degree of reflection in self-heating in relation to magnesium summer oxide (%) I - very light colors, 9010, 9002, 7035, 1015 75-90 temperature up to 55 °C II - light colors, 1002, 1021, 5012, 6011, 7040, 7047, 9006, 9007, 1003, 40-74 temperature up to 65 1021, °C 9005, 5010, 6005, 6020, 7024, 7016, 8019, 8017, 8012, 8-39 III - dark colors, temperature up to 80 ° 8004, 3016, 3011, 3009, 3000, 6029, 7012, 9005, 8620M, 3301M, 6490M, 7591M, 7016M, 8637M С

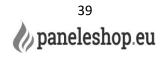
Table of colors according to brightness

Recommended maximum lengths according to color shade

Core type	Panel type	Panel type Color groups			
		I - very light colors	II - light colors	III - dark colors	
		[m]	[m]	[m]	
PUR/PIR	Wall, facade,	16	12	9	
	freezer,				
	Rooftop	16	15	12	
MWF Mineral wool	Wall, facade	13	9	6	
	Rooftop	13	11	9	
EPS Polystyrene	Wall	13	9	6	
core	Rooftop	15	11	9	

Failure to follow the above instructions may cause deformation of the panel surface and local loss of stability, for which we are not responsible.

Technical specifications


surface treatment

Distribution of color finishes

- Standard (SP25polyester, SP35polyester, ALUCYNK + Easyfilm®)(SP)
- Premium (HDS, HDX, Prisma) and (CESAR PUR 55®polyurethane)
- Special (FarmCoat, FoodSafe) and (PVDF, PCV(F) "food safe", GALVANIZED STEEL)

	a: 1 1				, ,	a · · ·	
	Standard		Premium	-		Special	-
Types of surface treatment	SP (polyester)	HDS (polyester polyureth ane)	HDX (polyurethane)	Prisma (polyurethane)	Farm Coating	Food coating	Galvanized steel
Thickness [microns, µm]	25	35	55	50	35	120	20
Surface	smooth	smooth	granular	granular	smooth	smooth	hladký
Bending adhesion	≤ 2 T	≤1T	≤1T	≤1T	≤1T	≤1T	-
Flexibility	≤ 3 T	≤ 2 T	≤ 1,5 T	≤ 2 T	≤ 2 T	≤ 2 T	-
Impact resistance	18J	18J	18J	18J	18J	18J	-
Surface hardness (pencil classificatio n)	HB-H	HB-H	НВ-Н	НВ-Н	HB-H	-	-
Scratch resistance	≥ 2,0 kg	≥ 2,2 kg	≥ 3,0 kg	≥ 2,2 kg	≥ 2,0 kg	3,5 - 4 kg	-
Corrosion resistance (salt test by spraying) in	360	500	700	1000	360	500	

(table of technical data)

hours							
Moisture	1000	1500	1500	1000	1500	-	-
resistance							
(QCT) in							
hours							
Corrosion	RC3	RC4	RC5	RC5	RC3	RC3	RC4
resistance							
class							
Resistance	≥ 30%; ∆ E ≤	≥ 80%; ∆ E	≥ 80%; ∆ E ≤ 2	≥ 80%; ∆ E ≤ 2	≥ 60%; ∆ E ≤ 3	-	-
to UV	5	≤2					
radiation							
(QUV [UVA							
+ H2O]							
[2000							
hour])							
-							
preservatio							
n of gloss							
UV	RUV2	RUV4	RUV4	RUV4	RUV3	-	-
resistance							
category							
Acid and	3	3-4	3-4	3-4	3-4	-	-
alkali							
resistance							
Resistance	4	4	4	4	4	-	-
to alcohols							
and							
aliphatic							
solvents							
Resistance	2	2	2	2	4	-	-
to ketones							
Resistance	3-4	3-4	3-4	3-4	4	-	-
to aromatic							
solvents							
Resistance	4	4	4	4	4	-	-
to mineral							
oils							

Data of stainless steel plating

PUR / PIR panels are also produced with stainless steel cladding.

Marking according to	Designation according to				Chemi	Chemical composition (%)						
EN 10088	AISI / ASTM	С	Si	Mn	Р	S	Ν	Cr	Мо	Ni		
					max							
1.4301	304	<	1	VI	0.045	VI	≤	17.50 -	-	8.00 -		
		0.07	1.00	2.00		0015	0.11	19.50		10.50		

Main information about offered surfaces

Standard SP (polyester, 25µm)

- For regions and conditions with low aggression and not exposed to excessive UV radiation. Intended for the environment of category A1.
- The properties of the plating are: thickness 0.50 mm, Zn225 zinc, both sides 225g/m2 or AlZn 150 aluzin, both sides 150g/m2
- The organic coating is a modified polyester coating. The base coat is 5 microns and the topcoat is 20 microns (total 25 μm)
- The corrosion resistance class is RC3
- Recommended for use in moderately aggressive conditions and environments of corrosion category C1-C3. Suitable for almost all European countries.
- The UV resistance class is RUV2

ALUCYNK + Easyfilm

- Metallic coating: 150 and 185 g/m2 surface weight for each side of the cladding
- Coating thickness 20µm (for 150 g/m2), 25 µm (for 185 g/m2)
- Double-sided heat-applied coating in a continuous process, additionally protected by a thin organic substance SPT (Special Protection Treatment) and Easyfilm (ecological thin organic layer that protects the aluminum coating from discoloration).
- Resistance to higher temperatures, high corrosion resistance, excellent heat and light reflection, good abrasion resistance.

Premium

HDS (polyester and polyurethane, 35µm)

- For regions and conditions with increased aggressiveness. Regions with increased levels of UV radiation (above 900 meters) above sea level).
- The properties of the plating are: thickness 0.50 mm, Zn225 zinc, both sides 225g/m2
- The organic coating is a modified polyester and polyurethane coating. The base coat is 15 microns and the topcoat is 20 microns (total 35 μm)
- The corrosion resistance class is RC4
- The UV resistance class is RUV4

• Recommended for use in aggressive conditions and environments of corrosion category RC4. For example, chemical plants, water parks, shipyards, industrial and coastal areas with moderate salinity

HDX (polyurethane, 55µm)

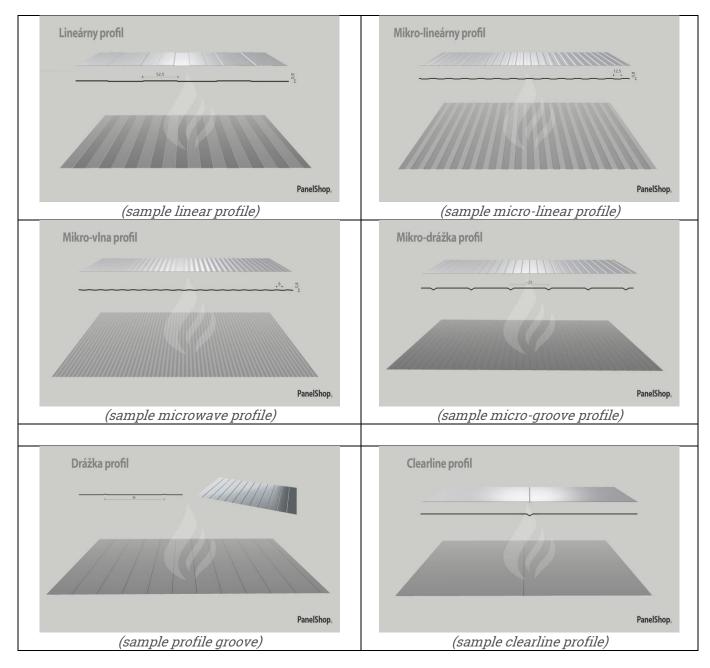
- For regions and conditions with very high aggressiveness. Regions with very high levels of UV radiation. Intended for the A4 category environment
- Features of plating are: thickness 0.50 mm, Zn225 zinc, both sides 225g/m2
- The organic coating is a modified polyurethane coating. The base coat is 25 microns and the topcoat is 30 microns (total 55 μm)
- The corrosion resistance class is RC5
- The class of resistance to UV radiation is RUV4
- Recommended for use in very aggressive conditions and environments of corrosion category RC5. For example, for buildings or areas with almost permanent condensation and heavy pollution, industrial areas with high relative humidity and an aggressive atmosphere, coastal and island areas with high salinity.

Special Farm coating (polyester, 35µm)

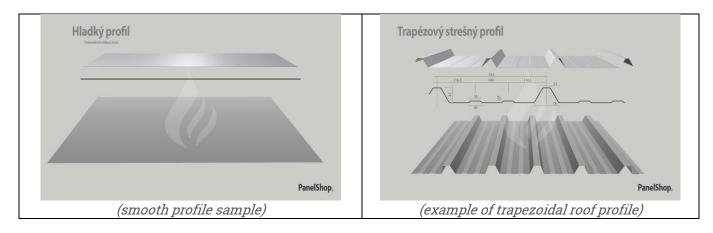
- For the farm and agricultural industry. Only as an interior lining. Intended for the environment of category A5
- Features of plating are: thickness 0.50 mm, Zn225 zinc, both sides 225g/m2
- Organic coating is a modified polyester coating. The base coat is 15 microns and the topcoat is 20 microns (total 35 μm)
- The corrosion resistance class is RC3
- The class of resistance to UV radiation is RUV3
- Very good chemical resistance to aggressive ammonia

Food coating (polyvinyl, 120µm)

- For the freezer and food industry, where an aggressive and humid internal environment is created. Intended for the environment of category A5
- Sheet metal properties are: thickness 0.50 mm and galvanized layer 275 g/m2
- The organic coating is a 120 μm polyvinyl layer with increased hardness
- Recommended for food processing facilities and cold storage, easy to wash and resistant to most cleaning agents



Galvanized steel (metallic, 120µm)


- coating thickness 20µm
- metallic coating with an area weight of 275 g/m2 on one side and the edges are independently covered with zinc
- double-sided coating applied while hot on a metal sheet
- high resistance to corrosion and mechanical damage

Types of profiles offered

We offer a very wide range of plating. Sheet metal profiles are standardly made of hotrolled DX51, S220GD, S250GD, S280GD, S320 GD steel sheet with a galvanized inorganic layer of 225 g/m2 zinc or 150 g/m2 aluminum layer. Profiling has a standard thickness of 0.5/0.4 or 0.5/0.5 mm. By default, it can be 0.6-0.7mm. Of course, each type must be agreed upon when ordering.

Properties of sandwich panels

naneleshop.et	1		R/PIR Polyisocyanurate		ystyrene ore		Aineral ool
		λ		Λ		λ	
		W/m*K	W/m2 *K	W/m*K	W/m2	W/m*K	W/m2
					*К		*K
Wall (standard)	40		0,57		0,86		0,96
	50		-		0,74		-
	60		0,37		0,62		0,64
	75		-		0,51		-
	80		0,27		0,46		0,48
	100		0,22		0,38		0,39
	120		0,18		0,31		0,33
	125		-		0,31		-
	140		0,16		0,27		0,28
	150		-		0,26		0,26
	160		0,14		0,24		0,23
	175	0.000	-		0,22		0,22
	180	0,022	0,12		0,21		-
	200		0,11		0,20		0,20
	230		-		-		0,17
	250		-		0,16		0,16
Facades (hidden	60		0,42		-		-
joint)	80		0,29		-		0,48
	100		0,22		-		0,38
	120		0,19	0,040	-	0,040	0,32
	150		-	0,010	-	5,510	0,26
	160		-		-		0,24
	180		-		-		0,22
	200		-		-		0,20
Refrigeration	120		0,18		-		-
	140		0,16		-		-
	160	0,022	0,14		-		-
	180		0,12		-		-
	200		0,11		-		-

	220		0,10	-		-
Rooftop	60		0,36	0,60		0,63
	75		-	0,49		-
	80		0,27	0,47		0,48
	100		0,22	0,38		0,39
	120		0,18	0,32		0,33
	125		-	0,30		-
	140		0,16	0,28		0,28
	150	0,022	-	0,26		0,26
	160		0,14	0,24		0,25
	175		-	0,22		0,23
	200		-	0,19]	0,20
	230		-	-]	0,19
	250		-	0,16		0,16

Calculations were made on the basis of tests of thermal conductivity λ according to the standard. Using the experimentally determined thermal conductivity, the heat transfer coefficient U was calculated. For the calculation, an operating temperature of + 10 °C was assumed, except for freezer rooms.

In the case of cold rooms and freezers, we recommend the selection of panels based on the heat flow density. This value should be below 10 W/m2.

The table below shows the heat flux density values for the panels depending on the temperature difference on both sides of the panels:

				-				1 (111)	`		
				1	leat II	ow density fo			.)		
							Type of pa				
Temperatur e difference ∆T (°C)	Wall PIR 40	Wall PIR 60	Wall PIR 80	Wall PIR 100	Wall PIR 120	Refrigeratio n PIR 120	Refrigerato r / Wall PIR 140	Refrigerato r / Wall PIR 160	Refrigerato r / Wall PIR 180	Refrigerato r / Wall PIR 200	Refrigeratio n PIR 220
		Heat transfer coefficient U (W/m2*K)									
	0,57	0,37	0,27	0,22	0,18	0,18	0,16	0,14	0,12	0,11	0,10
10	5,70	3,70	2,70	2,20	1,80	1,80	1,60	1,40	1,20	1,10	1,00
15	8,55	5,55	4,05	3,30	2,70	2,70	2,40	2,10	1,80	1,65	1,50
20	11,40	7,40	5,40	4,40	3,60	3,60	3,20	2,80	2,40	2,20	2,00
25	14,25	9,25	6,75	5,50	4,50	4,50	4,00	3,50	3,00	2,75	2,50
30	17,10	11,10	8,10	6,60	5,40	5,40	4,80	4,20	3,60	3,30	3,00
35	19,95	12,95	9,45	7,70	6,30	6,30	5,60	4,90	4,20	3,85	3,50
40	22,80	14,80	10,80	8,80	7,20	7,20	6,40	5,60	4,80	4,40	4,00
45	25,65	16,65	12,15	9,90	8,10	8,10	7,20	6,30	5,40	4,95	4,50
50	28,50	18,50	13,50	11,00	9,00	9,00	8,00	7,00	6,00	5,50	5,00
55	31,35	20,35	14,85	12,10	9,90	9,90	8,80	7,70	6,60	6,05	5,50
60	34,2 0	22,20	16,20	13,20	10,80	10,80	9,60	8,40	7,20	6,60	6,00
65	37,05	24,0 5	17,55	14,30	11,70	11,70	10,40	9,10	7,80	7,15	6,50
70	39,90	25,90	18,90	15,40	12,60	12,60	11,20	9,80	8,40	7,70	7,00

75	42,75	27,75	20,25	16,50	13,50	13,50	12,00	10,50	9,00	8,25	7,50
		29,6			14,4						
80	45,60	0	21,60	17,60	0	14,40	12,80	11,20	9,60	8,80	8,00
	48,4										
85	5	31,45	22,95	18,70	15,30	15,30	13,60	11,90	10,20	9,35	8,50
			24,3								
90	51,30	33,30	0	19,80	16,20	16,20	14,40	12,60	10,80	9,90	9,00
				20,9							
95	54,15	35,15	25,65	0	17,10	17,10	15,20	13,30	11,40	10,45	9,50
		37,0	27,0								
100	57,00	0	0	22,00	18,00	18,00	16,00	14,00	12,00	11,00	10,00

Behavior of the panels during fire

Fire safety issues, the behavior of materials in fire and the consequences of fire are becoming increasingly important in building design. The use of materials with better fire resistance parameters has become necessary due to new regulations in force, awareness of fire deaths and changing policies of insurance companies.

Different building materials behave differently during a fire. In order to include materials in the range of burning, the Euroclass evaluation was introduced. This classification allows testing the reaction of different materials to fire according to uniform principles. It determines three main parameters: the effect of the given material on the spread of fire, the volume and rate of smoke generation and also the occurrence of burning material droplets. The following table presents the Euroclass distribution. and basic requirements:

Euroclass (Euroclass).	Fire behavior	Fire spread	Fire growth rate coefficient
A1	no flame attack	non-flammable, negligible heat- generating potential, no spread of fire	-
A2	no flame attack	non-flammable, low heat- generating potential, insignificant fire spread	< 120 W/s
В	no flame attack	flame retardant, very limited fire spread	< 120 W/s
С	at a heat flow of 100 kW, the flame does not burn, flame attack only after 10 minutes at a heat flow of 300kW	limited but visible fire spread	< 250 W/s
D	flame attack only after 2 minutes at a heat flow of 100 kW	significant fire spread	< 750 W/s
E	flame attack only after 2 minutes at a heat flow of 100 kW	kritické šírenie ohňa	> 750 W/s

F no requirements not specified no require	ements

For materials that cannot be classified in class A1, two parameters are determined: smoke generation and the occurrence of burning material droplets. Smoke causes panic, chaos and more deaths than flame alone.

Classification	Description
sl	almost no smoke
s2	medium volume and density of smoke
s3	large volume of thick smoke

Burning droplets can cause burns and create new fire spots.

Classification	Description
d0	no burning droplets
d1	few burning droplets
d2	high volume of burning droplets and particles

Example of Euroclass marking:

A1 - Euroclass A1 is the only one and no additional classifications follow.

B-s2, d0 - all other Euroclasses have additional classifications. The B-s2, d0 rating indicates a material that burns slowly, produces a medium volume of smoke, and does not produce burning droplets or particles.

Fire resistance or fire resistance

The fire resistance of a barrier, which is a wall or a roof, means the time during which this barrier is able to maintain its specific properties, for example:

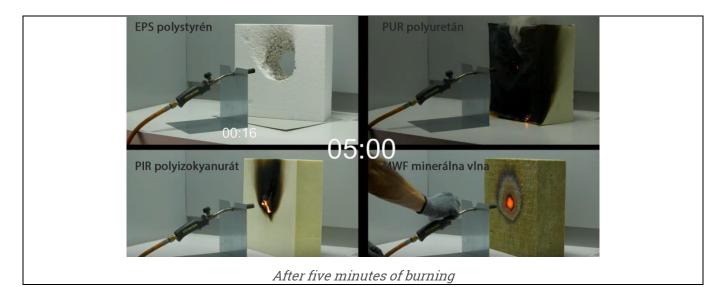
- R load capacity E – impermeability
- I insulating power

The parameter R indicates the time during which the loaded element is able to maintain its load capacity, while not exceeding the limit values of load capacity and operational safety. In the case of sandwich panels, this parameter applies to roof panels.Parameter E označuje čas, počas ktorého je bariéra schopná tesnosti voči plameňom a dymu. **Parameter I** indicates the time during which the barrier is able to meet the conditions of the insulating power and prevent the standard temperature limit values on the side not exposed to the flames from being exceeded.

Some other secondary parameters of sandwich panels are also evaluated: **W - permeability**. This classification is reflected directly in the building requirements.

Panel type	Core thickness	Fire r	esistanc	e class	Reaction to fire	Fire	Vertical installation	Horizontal installation -
	thickness				to fire	spread	- max. transverse	max. column
							span	
	60	TOO		TIMCO	D 0 10	NDO	4.00	span
Wall PIR	≥ 60 mm	E30	EI15	EW60	B-s2, d0	NRO	≤ 4,00 m	≤ 4,00 m
	≥ 80 mm	E15	EI15	EW20	B-s1,d0	NRO	≤ 4,00 m	≤ 4,00 m
	≥ 100 mm	E30	EI30	EW30	B-s1,d0	NRO	≤ 3,00 m	≤ 3,00 m
	≥ 120 mm	E30	EI30	EW30	B-s1,d0	NRO	≤ 4,00 m	≤ 4,00 m
		E20	EI20	EW20	B-s1,d0	NRO	≤ 10,52 m	≤ 4,00 m
		E15	EI15	EW15	B-s1,d0	NRO	≤ 11,30 m	≤ 4,00 m
Freezer PIR	≥ 120 mm	E30	EI30	EW30	B-s1,d0	NRO	≤ 4,00 m	≤ 4,00 m
		-	El15	-	B-s1,d0	NRO	≤ 10,95 m	≤ 4,00 m
	≥200mm	E90*	El30*	EW60*	B-s1,d0	NRO	≤12,00m	≤ 4,00 m
		E120*	El60*	EW60*	B-s1,d0	NRO	≤4,00m	≤ 4,00 m
Facade PIR	≥ 60 mm	-	-	-	B-s2,d0	NRO		
	≥ 100 mm	E15	EI15	EW15	B-s2,d0	NRO	≤ 4,00 m	≤ 4,00 m
Wall PUR	≥ 40 mm	-	-	-	B-s2,d0	NRO	-	-
	≥ 80 mm	E15	EI15	EW20	B-s2,d0	NRO	≤ 4,00 m	≤ 4,00 m
Freezer PUR	≥ 120 mm	E20	EI15	EW20	B-s2,d0	NRO	≤ 4,00 m	≤ 4,00 m
		E15	-	EW15	B-s2,d0	NRO	≤ 11,11 m	≤ 4,00 m
PUR facades	≥ 60 mm				B-s2, d0	NRO		
	≥ 100 mm	E15	EI15	EW15	B-s2,d0	NRO	≤ 4,00 m	≤ 4,00 m
Wall mineral	≥ 60 mm				A2-s1,d0	NRO		
wool MWF	≥ 80 mm	E45	EI45	EW45	A2-s1,d0	NRO	≤ 3,00 m	≤ 3,00 m
		E30	EI30	EW30	A2-s1,d0	NRO	≤ 11,62 m	≤ 4,00 m
		E20	EI20	EW20	A2-s1,d0	NRO	≤ 12,00 m	≤ 4,00 m
	≥ 100 mm	E60	EI60	EW60	A2-s1,d0	NRO	≤ 4,00 m	≤ 4,00 m
		E45	EI45	EW45	A2-s1,d0	NRO	≤ 11,78 m	≤ 4,00 m
		E30	EI30	EW30	A2-s1,d0	NRO	≤ 12,00 m	≤ 4,00 m
	≥ 150 mm	E120	EI120	EW120	A2-s1,d0	NRO	≤ 10,60 m	≤ 11,12 m
		E90	EI90	EW90	A2-s1,d0	NRO	≤ 11,39 m	≤ 12,00 m
		E60	EI60	EW60	A2-s1,d0	NRO	≤ 12,00 m	≤ 12,00 m
Wall polystyrene EPS	≥ 100 mm	-	-	-	D-s2,d0	NRO	-	-

Detailed information on fire resistance of panels - reaction to fire


*panely spojené skrutkami na oboch stranách každých 150 mm

Panel type	Core thickness	Fi	re resist class		Reaction to fire	Resistance to external fire	Max. the distance of the supports	Roof pitch angle
PUR	≥ 40 mm	-	-	-	B-s2, d0	$B_{roof}(t_1)$	≤ 3m	0° - 15°
roofing	≥100 mm	R60	RE60	REI15	B-s2, d0	$B_{roof}(t_1)$	≤ 3m	0° - 15°
Roof PIR	≥ 60 mm	-	-	-	B-s2, d0	$B_{roof}(t_1)$	≤ 3m	0° - 15°
	≥100 mm	R60	RE60	REI30	B-s1, d0	$B_{roof}(t_1)$	≤ 3m	0° - 15°
Roofing	≥ 60 mm	R60	RE60	EI60-	A2-s1,d0	$B_{roof}(t_1)$	≤ 2,4m	0° - 15°
mineral wool				120				
Roof EPS	≥ 60 mm	- - - R60 RE60 REI1 - - - R60 RE60 REI3 R60 RE60 REI3 R60 RE60 EI60 120 - -			-	B _{roof} (t ₁)	≤ 3m	0° - 15°

NOTE: The recommended angle of inclination of the roof is min. 3-4°

Comparison of burning panels

Load capacity of panels

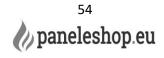
PIR/PUR wall panels. One span system: characteristic maximum load on panels in 0.5/0.4 claddings and micro-profiling / lining profile patters; support width [mm] in brackets

core	load impact					Chara	cterist	ic maxi	mum le	oad [kN	l/m²] at	the gi	ven spa	an [m]				
thickness	direction	2,00	2,25	<mark>2,50</mark>	<mark>2,75</mark>	3,00	3,25	3,50	3,75	4,00	4,25	4,50	4,75	5,00	5,25	<mark>5,50</mark>	5,75	6,00
40	pushing	2,78 (45)	2,47 (45)	2,22 (45)	2,02 (45)	1,85 (45)	1,68 (45)	1,45 (41)	1,26 (40)	1,11 (40)	0,98 (40)	0,88 (40)	0,79 (40)	0,71 (40)	0,64 (40)	0,59 (40)	0,54 (40)	0,49 (40)
	suction	-2,16	-1,71	-1,38	-1,14	-0,96	- <mark>0,82</mark>	- <mark>0,71</mark>	-0,62	-0,54	-0,48	<mark>-0,4</mark> 3	-0,39	-0,35	-0,31	-0,28	- <mark>0,26</mark>	-0,24
50	pushing	3,37 (55)	<mark>2,99</mark> (55)	2,69 (55)	2,45 (55)	<mark>2,24</mark> (55)	2,07 (55)	1,82 (52)	1,58 (48)	1,39 (45)	1,23 (43)	1,1 (40)	0,99 (40)	0,89 (40)	0,81 (40)	0,74 (40)	0,67 (40)	0,62 (40)
50	suction	-2,69	- <mark>2,13</mark>	-1,72	-1,42	- <mark>1,19</mark>	- <mark>1,02</mark>	- <mark>0,88</mark>	-0,76	-0,67	-0,6	- <mark>0,5</mark> 3	-0,48	- <mark>0,43</mark>	-0,39	-0,36	-0,32	-0,3
60	pushing	3,9 (63)	3,47 (63)	3,12 (63)	2,84 (64)	2,6 (63)	2,4 (63)	2,19 (62)	1,91 (58)	1,68 (55)	1,49 (52)	1,32 (48)	1,19 (46)	1,07 (44)	0,97 (42)	0,89 (40)	0,81 (40)	0,75 (40)
00	suction	-3,21	-2,54	-2,05	-1,7	-1,42	-1,21	-1,05	-0,91	-0,8	-0,71	<mark>-0,63</mark>	-0,57	- <mark>0,5</mark> 1	-0,47	-0,42	-0,39	-0,36
80	pushing	4,82 (78)	4,29 (78)	3,86 (78)	3,51 (78)	3,21 (78)	<mark>2,97</mark> (78)	2,75 (78)	2,56 (78)	2,25 (73)	1,99 (69)	1,77 (65)	1,59 (61)	1,44 (59)	1,3 (56)	1,19 (53)	1,08 (51)	1 (49)
00	suction	-4,21	-3,33	-2,69	-2,23	-1, <mark>8</mark> 7	-1,59	-1,37	-1,19	-1,05	-0,93	- <mark>0,83</mark>	<mark>-0,75</mark>	- <mark>0,67</mark>	-0,61	-0,56	-0,51	-0,47
100	pushing	6,04 (98)	5,37 (98)	4,83 (98)	4,39 (98)	4,03 (98)	3,72 (98)	3,45 (98)	3,21 (98)	2,82 (92)	2,49 (86)	2,22 (81)	2 (77)	1,8 (73)	1,63 (70)	1,49 (67)	1,36 (64)	1,25 (61)
100	suction	-5,17	-4,09	-3,31	-2,73	-2,3	-1,96	-1,69	-1,47	-1,29	-1,14	<mark>-1,02</mark>	-0,91	-0,83	-0,75	-0,68	-0,63	-0,57
120	pushing	7,26 (117)	6,46 (117)	5,81 (117)	5,28 (118)	<mark>4,84</mark> (118)	4,47 (118)	4,15 (118)	3,85 (117)	3,39 (110)	3 (103)	2,68 (98)	2,4 (93)	2,17 (88)	1,96 (84)	1,79 (80)	<mark>1,64</mark> (77)	1,5 (73)
120	suction	-6,08	-4,81	-3,89	-3,22	-2,7	-2,3	-1,98	-1,73	-1,52	-1,34	-1,2	-1,07	-0,97	-0,88	-0,8	-0,73	-0,68

PIR/PUR wall panels. Multi span system: characteristic maximum load on panels in 0.5/0.4 claddings and micro-profiling/ lining profile patters; support width [mm] in brackets.

core	load impact					Chara	cterist	ic maxi	mum le	oad [kN	l/m²] a	t the gi	ven spa	an [m]				
thickness	direction	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00
40	pushing	2,72 (44/88)	2 (40/73)	1,53 (40/62)	1,21 (40/60)	0,97 (40/60)	0,79 (40/60)	0,66 (40/60)	0,55 (40/60)	0,48 (40/60)	0,41 (40/60)	0,36 (40/60)	0,32 (40/60)	0,28 (40/60)	0,26 (40/60)	0,23 (40/60)	0,21 (40/60)	0,19 (40/60)
40	suction	-2,16	-1,71	- <mark>1,</mark> 38	-1,14	-0,96	- <mark>0,8</mark> 2	-0,71	-0,62	-0,54	-0,48	-0,43	-0,39	-0,35	-0,31	-0,28	-0,26	-0,24
50	pushing	3,36 (55/109)	2,55 (47/93)	1,93 (40/78)	1,51 (40/68)	1,19 (40/60)	0,96 (40/60)	0,79 (40/60)	0,66 (40/60)	0,56 (40/60)	0,48 (40/60)	0,42 (40/60)	0,37 (40/60)	0,33 (40/60)	0,29 (40/60)	0,26 (40/60)	0,24 (40/60)	0,22 (40/60)
50	suction	-2,69	-2,13	-1,72	-1,42	-1,19	-1,02	-0,88	-0,76	- <mark>0,67</mark>	- <mark>0,6</mark> 0	-0,53	-0,48	- 0,4 3	-0,39	-0,36	-0,33	-0,30
60	pushing	3,9 (63/126)	3,1 (57/113)	2,32 (47/94)	1,81 (41/81)	1,4 (40/68)	1,11 (40/60)	0,9 (40/60)	0,75 (40/60)	0,63 (40/60)	0,54 (40/60)	0,47 (40/60)	0,41 (40/60)	0,36 (40/60)	0,32 (40/60)	0,29 (40/60)	0,26 (40/60)	0,24 (40/60)
00	suction	-3,21	-2,54	-2,05	-1,7	-1,42	-1,21	-1,05	-0,91	-0,80	- 0,7 1	-0,63	-0,57	-0,51	-0,47	-0,42	-0,39	- <mark>0,3</mark> 6
80	pushing	4,82 (78/156)	4,17 (76/152)	3,07 (62/124)	2,32 (52/104)	1,75 (43/85)	1,35 (40/71)	1,07 (40/61)	0,87 (40/60)	0,72 (40/60)	0,61 (40/60)	0,52 (40/60)	0,45 (40/60)	0,39 (40/60)	0,34 (40/60)	0,3 (40/60)	0,27 (40/60)	0,24 (40/60)
80	suction	-4,21	-3,33	-2,69	-2,23	-1,87	-1,59	-1,37	-1,19	-1,05	-0,93	-0,83	-0,75	-0,67	-0,61	-0,56	-0,51	-0,47
100	pushing	6,04 (98/196)	5,14 (94/187)	3,73 (76/151)	2,68 (60/120)	1,97 (48/96)	1,48 (40/78)	1,14 (40/65)	0,9 (40/60)	0,73 (40/60)	0,6 (40/60)	0,5 (40/60)	0,42 (40/60)	0,36 (40/60)	0,31 (40/60)	0,27 (40/60)	0,24 (40/60)	0,21 (40/60)
100	suction	-5,17	-4,09	-3,31	-2,73	-2,3	-1,96	-1,69	-1,47	-1,29	-1,14	-1,02	-0,91	-0,83	-0,75	-0,68	-0,63	-0,57
120	pushing	7,26 (118/235)	5,97 (109/217)	4,18 (85/169)	2,87 (64/128)	2,03 (50/99)	1,48 (40/78)	1,1 (40/63)	0,83 (40/60)	0,65 (40/60)	0,51 (40/60)	0,41 (40/60)	0,34 (40/60)	0,28 (40/60)	0,23 (40/60)	0,19 (40/60)	0,16 (40/60)	0,14 (40/60)
120	suction	- <mark>6,</mark> 08	-4,81	- <mark>3,8</mark> 9	-3,22	-2,7	-2,3	-1 <mark>,</mark> 98	-1,73	-1,52	-1,34	-1,2	-1,07	- <mark>0,9</mark> 7	-0,88	-0,8	-0,73	-0,68

core	load impact					Chara	cterist	ic maxi	mum le	oad [kN	l/m²] at	t the gi	ven spa	an [m]				
thickness	direction	2,00	2,25	2,50	2,75	3,00	3,25	<mark>3,5</mark> 0	3,75	4,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00
40/85	pushing	1,7 (40)	1,41 (40)	1,2 (40)	1,02 (40)	0,88 (40)	0,77 (40)	0,67 (40)	0,59 (40)	0,53 (40)	0,47 (40)	0,41 (40)	0,37 (40)	0,33 (40)	0,26 (40)	0,1 (40)	-	2
40/85	suction	-1,90	-1,64	-1,39	-1,20	-1,04	- <mark>0,92</mark>	-0,81	-0,73	-0,66	- <mark>0,60</mark>	-0,54	-0,50	-0,46	-0,43	-0,39	-	-
60/105	pushing	2,31 (40)	1,98 (40)	1,72 (40)	1,5 (40)	1,32 (40)	1,17 (40)	1,04 (40)	0,93 (40)	0,84 (40)	0,75 (40)	0,68 (40)	0,61 (40)	0,56 (40)	0,5 (40)	0,46 (40)	0,42 (40)	0,37 (40)
00/105	suction	-2,86	-2,44	-2,10	-1,83	-1,61	-1,42	-1,27	-1,13	-1,02	-0,93	- <mark>0,85</mark>	-0,77	-0,71	-0,65	-0,60	-0,56	-0,51
80/125	pushing	2,96 (50)	2,59 (49)	2,28 (49)	2,03 (48)	1,81 (47)	1,62 (46)	1,46 (45)	1,31 (43)	1,19 (42)	1,07 (41)	0,98 (40)	0,89 (40)	0,81 (40)	0,74 (40)	0,68 (40)	0,62 (40)	0,57 (40)
00/125	suction	-3,86	-3,33	-2,91	-2,55	-2,25	-2,00	-1,73	-1,50	-1,33	-1,18	-1,06	-0,95	-0,87	-0,79	-0,73	-0,67	-0,62
100/145	pushing	3,49 (59)	3,09 (59)	2,76 (58)	2,48 (58)	2,23 (57)	2,01 (56)	1,82 (55)	1,65 (54)	1,5 (52)	1,37 (51)	1,25 (50)	1,14 (48)	1,04 (47)	0,96 (46)	0,88 (44)	0,81 (43)	0,75 (42)
100/145	suction	-4,91	- <mark>4</mark> ,29	-3,77	- <mark>3,</mark> 30	-2,76	- <mark>2,35</mark>	-2,03	-1,77	-1,56	- <mark>1,3</mark> 9	-1,24	-1,12	-1,02	-0,93	-0,85	-0,79	-0,73
120/165	pushing	3,64 (61)	3,27 (62)	2,96 (63)	2,69 (63)	2,69 (68)	2,24 (62)	2,05 (62)	1,88 (61)	1,72 (60)	1,58 (59)	1,54 (61)	1,34 (56)	1,24 (55)	1,14 (54)	1,06 (53)	0,98 (51)	0,94 (52)
120/105	suction	- <mark>6,0</mark> 0	-5,28	- <mark>4</mark> ,59	-3,77	-3,16	-2,69	-2,32	-2,02	-1,78	-1,58	-1,42	-1,28	- <mark>1,16</mark>	-1,06	-0,97	-0,90	-0,83
160/205	pushing	4,17 (70)	3,8 (72)	3,49 (74)	3,21 (75)	2,97 (76)	2,74 (76)	2,53 (76)	2,34 (75)	2,16 (74)	2 (74)	1,86 (73)	1,72 (71)	1,6 (70)	1,49 (69)	1,38 (68)	1,29 (66)	1,2 (65)
. 50/205	suction	-7,01	- <mark>6,32</mark>	-5,70	-4,91	-4,11	-3,49	-3,01	-2,62	-2,31	- <mark>2,05</mark>	-1,84	-1,65	-1,50	-1,37	-1,25	-1,15	-1,07


Roof PIR/PUR panels. One span system: characteristic maximum load on panels in 0.5/0.4 claddings and trapezoidal / lining profile patters; support width [mm] in brackets.

Roof PIR/PUR panels. Multi span system: characteristic maximum load on panels in 0.5/0.4 claddings and trapezoidal/ lining profile patters; support width [mm] in brackets.

core	load impact					Chara	cterist	ic maxi	mum l	oad [kN	l/m²] a	t the gi	ven spa	an [m]				
thickness	direction	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	<mark>4,00</mark>	4,25	<mark>4,50</mark>	4,75	5,00	5,25	<mark>5,5</mark> 0	5,75	6,00
40/85	pushing	1,7 (40/60)	1,41 (40/60)	1,16 (40/60)	0,97 (40/60)	0,83 (40/60)	0,71 (40/60)	0,62 (40/60)	0,54 (40/60)	0,48 (40/60)	0,43 (40/60)	0,38 (40/60)	0,34 (40/60)	0,3 (40/60)	0,27 (40/60)	0,25 (40/60)	0,22 (40/60)	0,2 (40/60)
40/05	suction	-1,97	-1,64	-1,39	- <mark>1,20</mark>	-1,04	-0,92	- <mark>0,8</mark> 1	-0,73	- <mark>0,66</mark>	-0,60	- <mark>0,54</mark>	-0,50	-0,46	-0,43	-0,40	-0,37	-0,35
60/105	pushing	1,93 (40/66)	1,58 (40/61)	1,31 (40/60)	1,11 (40/60)	0,96 (40/60)	0,83 (40/60)	0,73 (40/60)	0,65 (40/60)	0,58 (40/60)	0,52 (40/60)	0,47 (40/60)	0,42 (40/60)	0,38 (40/60)	0,35 (40/60)	0,32 (40/60)	0,29 (40/60)	0,26 (40/60)
00,105	suction	-2,50	-2,08	-1,78	-1,55	-1,36	-1,22	-1,10	-1,00	-0,91	- <mark>0,84</mark>	-0,78	-0,73	-0,68	-0,64	-0,60	-0,56	-0,52
80/125	pushing	2,11 (40/72)	1,74 (40/67)	1,46 (40/64)	1,25 (40/61)	1,08 (40/60)	0,95 (40/60)	0,84 (40/60)	0,74 (40/60)	0,67 (40/60)	0,6 (40/60)	0,54 (40/60)	0,5 (40/60)	0,45 (40/60)	0,41 (40/60)	0,38 (40/60)	0,35 (40/60)	0,32 (40/60)
80/125	suction	-2,81	-2,36	-2,03	-1,77	-1,57	-1,40	-1,27	-1,16	-1,06	-0,98	-0,91	-0,85	- <mark>0,8</mark>	-0,75	-0,71	-0,67	-0,62
100/145	pushing	2,29 (40/78)	1,89 (40/73)	1,6 (40/69)	1,37 (40/66)	1,19 (40/63)	1,05 (40/61)	0,93 (40/60)	0,83 (40/60)	0,75 (40/60)	0,68 (40/60)	0,62 (40/60)	0,56 (40/60)	0,51 (40/60)	0,47 (40/60)	0,43 (40/60)	0,4 (40/60)	0,37 (40/60)
100/145	suction	-2,94	-2,48	-2,14	-1,87	-1,66	-1,49	-1,35	-1,24	-1,14	- <mark>1,05</mark>	-0,98	-0,92	-0,86	-0,81	-0,77	-0,73	-0,69
120/165	pushing	2,45 (42/83)	2,04 (40/79)	1,73 (40/75)	1,49 (40/72)	1,3 (40/69)	1,15 (40/67)	1,02 (40/65)	0,91 (40/63)	0,82 (40/61)	0,75 (40/60)	0,68 (40/60)	0,62 (40/60)	0,57 (40/60)	0,53 (40/60)	0,49 (40/60)	0,45 (40/60)	0,42 (40/60)
120/105	suction	-3,15	-2,66	-2,30	-2,01	-1,79	- <mark>1,6</mark> 1	- <mark>1,4</mark> 6	- <mark>1,34</mark>	-1,23	-1,14	-1,07	-1,00	-0,94	-0,89	-0,84	-0,80	-0,77
160/205	pushing	2,53 (43/86)	2,1 (41/82)	1,79 (40/78)	1,54 (40/75)	1,35 (40/72)	1,19 (40/70)	1,06 (40/68)	0,95 (40/66)	0,86 (40/64)	0,78 (40/63)	0,71 (40/61)	0,65 (40/60)	0,6 (40/60)	0,55 (40/60)	0,51 (40/60)	0,47 (40/60)	0,43 (40/60)
160/205	suction	-3,15	-2,67	-2,31	-2,03	-1,80	-1,62	-1,48	-1,35	-1,25	- <mark>1,1</mark> 6	-1,08	-1,02	-0,96	-0,91	- <mark>0,86</mark>	- <mark>0,82</mark>	-0,78

MWF mineral wool wall panels 1 span arrangement - maximum characteristic loads for MW-W-ST sandwich panels with mineral wool core, in claddings of 0,50 / 0,50 mm thickness Direction of force - TO THE SUPPORT.

					MW	/F m	iner	alw	7 100	vall	pan	els									
Core	Colour	Condition						Μ	axim	um lo	ads [k	۸/m²] for t	he sp	an L[r	n]					
hickness	group	Condition	1,20	1,50	1,80	2,10	2,40	2,70	3,00	3,30	3,60	3,90	4,20	4,50	4,80	5,10	5,40	5,70	6,00	6,30	6,6
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	0,94	0,83	0,73	0,65	0,58	0,53	0,48	0,4
	1	q ₂₀₀	14,56	10,46	7,75	5,87	4,53	3,55	2,73	2,12	1,66	1,31	1,01	0,74	0,53	0,38	0,26	0,16	0,09	0,03	0,0
		9 ₁₀₀	29,13	20,93	15,51	11,75	9,07	7,11	5,66	4,56	3,71	3,06	2,54	2,13	1,81	1,54	1,32	1,13	0,96	0,82	0,7
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	0,94	0,83	0,73	0,65	0,58	0,53	0,48	0,4
80	Ш	q ₂₀₀	14,56	10,46	7,75	5,87	4,53	3,55	2,73	2,12	1,66	1,31	1,01	0,74	0,53	0,38	0,26	0,16	0,09	0,03	0,0
		q ₁₀₀	29,13	20,93	15,51	11,75	9,07	7,11	5,66	4,56	3,71	3,06	2,54	2,13	1,81	1,54	1,32	1,13	0,96	0,82	0,7
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	0,94	0,83	0,73	0,65	0,58	0,53	0,48	0,4
	III	9 ₂₀₀	14,56	10,46	7,75	5,87	4,53	3,55	2,73	2,12	1,66	1,31	1,01	0,74	0,00	0,00	0,00	0,00	0,00	0,00	0,0
		q ₁₀₀		20,93	15,51	11,75	9,07	7,11	5,66	4,56	3,71	3,06	2,54	2,13	1,81	1,54	1,32	1,13	0,96	0,82	0,7
		9 _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,82	0,73	0,66	0,60	0,5
	1	9 ₂₀₀	19,06	13,93	10,50	8,09	6,34	5,03	4,05	3,30	2,66	2,14	1,74	1,42	1,17	0,97	0,76	0,59	0,45	0,34	0,2
		q ₁₀₀	38,13	27,87		16,19	12,68	10,07	8,11	6,60	5,42	4,50	3,77	3,18	2,71	2,32	2,00	1,73	1,51	1,33	1,1
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,82	0,73	0,66	0,60	0,5
100	Ш	9 ₂₀₀		13,93	10,50	8,09	6,34	5,03	4,05	3,30	2,66	2,14	1,74	1,42	1,17	0,97	0,76	0,59	0,45	0,34	0,2
		q ₁₀₀	38,13		21,01	16,19	12,68	10,07	8,11	6,60	5,42	4,50	3,77	3,18	2,71	2,32	2,00	1,73	1,51	1,33	1,1
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,82	0,73	0,66	0,60	0,5
	111	q ₂₀₀	19,06	13,93	10,50	•••••	6,34	5,03	4,05	3,30	2,66	2,14	1,74	1,42	1,17	0,97	0,76	0,59	0,00	0,00	0,0
		9 ₁₀₀	38,13		21,01	16,19	12,68	10,07	8,11	6,60	5,42	4,50	3,77	3,18	2,71	2,32	2,00	1,73	1,51	1,33	1,1
			3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
	1	q ₂₀₀			13,34	10,41	8,25	6,62	5,38	4,42	3,66	3,06	2,56	2,12	1,76	1,48	1,24	1,05	0,90	0,75	0,6
		9 ₁₀₀	47,23	34,96		20,82		13,25	10,77	8,84	7,32	6,12	5,15	4,37	3,74	3,22	2,78	2,42	2,12	1,86	1,6
10000		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
120	Ш	q ₂₀₀	23,61	17,48	13,34	10,41	8,25	6,62	5,38	4,42	3,66	3,06	2,56	2,12	1,76	1,48	1,24	1,05	0,90	0,75	0,6
		9 ₁₀₀	47,23	34,96	26,69	20,82	16,50	13,25	10,77	8,84	7,32	6,12	5,15	4,37	3,74	3,22	2,78	2,42	2,12	1,86	1,6
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
	III	9 ₂₀₀	23,61	17,48	13,34	10,41	8,25	6,62	5,38	4,42	3,66	3,06	2,56	2,12	1,76	1,48	1,24	1,05	0,90	0,75	0,6
		9 ₁₈₈	47,23	34,96	26,69	20,82	16,50	13,25	10,77	8,84	7,32	6,12	5,15	4,37	3,74	3,22	2,78	2,42	2,12	1,86	1,6
		.q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,84	0,75	0,67	0,61	0,55	0,5
	L	q ₂₀₀	25,90	19,26	14,79	11,59	9,23	7,45	6,08	5,01	4,16	3,49	2,95	2,50	2,09	1,76	1,49	1,27	1,08	0,93	0,8
		q ₁₀₀	51,80	38,53	29,58	23,19	18,47	14,90	12,16	10,02	8,33	6,98	5,90	5,02	4,30	3,70	3,21	2,80	2,45	2,16	1,9
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,84	0,75	0,67	0,61	0,55	0,5
130	Ш	q ₂₀₀	25,90	19,26	14,79	11,59	9,23	7,45	6,08	5,01	4,16	3,49	2,95	2,50	2,09	1,76	1,49	1,27	1,08	0,93	0,8
		q ₁₀₀	51,80	38,53	29,58	23,19	18,47	14,90	12,16	10,02	8,33	6,98	5,90	5,02	4,30	3,70	3,21	2,80	2,45	2,16	1,9
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,84	0,75	0,67	0,61	0,55	0,5
	III	9 ₂₀₀	25,90	19,26	14,79	11,59	9,23	7,45	6,08	5,01	4,16	3,49	2,95	2,50	2,09	1,76	1,49	1,27	1,08	0,93	0,8
		q ₁₀₀	51,80	38,53	29,58	23,19	18,47	14,90	12,16	10,02	8,33	6,98	5,90	5,02	4,30	3,70	3,21	2,80	2,45	2,16	1,9
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,70	0,6
	1	9 ₂₀₀		14,49			7,56		5,25	4,43	3,77	3,22	2,77	2,40	2,09	1,79	1,54	1,32	1,15	0,99	0,8
		9 ₁₀₀	37,95	28,98		18,46	15,13	12,55	10,51	8,87	7,54	6,45	5,55	4,80	4,18	3,65	3,20	2,83	2,50	2,22	1,9
	122	.q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,70	0,6
140	II	9 ₂₀₀	18,97	14,49	11,44	9,23	7,56	6,27	5,25	4,43	3,77	3,22	2,77	2,40	2,09	1,79	1,54	1,32	1,15	0,99	0,8
		9 ₁₀₀	122000	28,98	Carlo Lonco	11125-0122	15,13	011000001	10,51	8,87	7,54	6,45	5,55	4,80	4,18	3,65	3,20	2,83	2,50	2,22	1,9
			3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	<mark>0,</mark> 89	0,84	0,80	0,76	0,70	0,6
	III	9 ₂₀₀		14,49			7,56	6,27	5,25	4,43	3,77	3,22	2,77	2,40	2,09	1,79	1,54	1,32	1,15	0,99	0,8
		q ₁₀₀		28,98			15,13	10. 00000	10,51	8,87	7,54	6,45	5,55	4,80	4,18	3,65	3,20	2,83	2,50	2,22	1,9
		q _{dop}	3,80			2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
	I	9 ₂₀₀				10,05			••••••	4,89	4,17	3,58		2,68	2,33	2,04		1,53	1,33	1,16	1,0
	c	9 ₁₀₀	_			20,10		13,75			8,34	7,16	6,17	5,36	4,67	4,09	3,59	3,17	2,81	2,50	2,2
		q _{dop}	3,80			2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
150 I	Ш	q ₂₀₀		15,67		•••••	8,26	6,87	5,77	4,89	4,17	3,58	3,08	2,68	2,33	2,04	1,77	1,53	1,33	1,16	1,0
		9 ₁₀₀				20,10					8,34	7,16	6,17	5,36	4,67	4,09	3,59	3,17	2,81	2,50	2,2
		q _{dop}	3,80	3,04		2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
	III	q ₂₀₀		15,67			8,26	6,87	5,77	4,89	4,17	3,58	3,08	2,68	2,33	2,04	1,77	1,53	1,33	1,16	1,0
		q ₁₀₀	40,93	31,34	24,82	20,10	16,53	13,75	11,55	9,78	8,34	7,16	6,17	5,36	4,67	4,09	3,59	3,17	2,81	2,50	2,2

		100		100		100.00		100.0		1000		2.0		1100		1.00		5.60	25	1.5.5	,
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,69
	1	9 ₂₀₀	21,95	16,85	13,38	10,87	8,96	7,48	6,30	5,35	4,58	3,94	3,40	2,96	2,58	2,27	2,00	1,74	1,52	1,33	1,13
	-	q ₁₀₀	43,91	33,71	26,77	21,74	17,93	14,97	12,61	10,71	9,16	7,88	6,81	5,92	5,17	4,54	4,00	3,54	3,14	2,80	2,5
		9 _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,69
160	11	9 ₂₀₀	21,95	16,85	13,38	10,87	8,96	7,48	6,30	5,35	4,58	3,94	3,40	2,96	2,58	2,27	2,00	1,74	1,52	1,33	1,13
		q ₁₀₀	43,91	33,71	26,77	21,74	17,93	14,97	12,61	10,71	9,16	7,88	6,81	5,92	5,17	4,54	4,00	3,54	3,14	2,80	2,5
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
	III	9 ₂₀₀	21,95	16,85	13,38	10,87	8,96	7,48	6,30	5,35	4,58	3,94	3,40	2,96	2,58	2,27	2,00	1,74	1,52	1,33	1,1
		q ₁₀₀	43,91	33,71	26,77	21,74	17,93	14,97	12,61	10,71	9,16	7,88	6,81	5,92	5,17	4,54	4,00	3,54	3,14	2,80	2,5
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
	I .	q ₂₀₀	24,94	19,22	15,34	12,52	10,38	8,71	7,38	6,30	5,41	4,67	4,06	3,54	3,11	2,73	2,42	2,14	1,91	1,70	1,5
		q ₁₀₀	49,88	38,45	30,68	25,04	20,76	17,42	14,76	12,60	10,82	9,35	8,12	7,09	6,22	5,47	4,84	4,29	3,82	3,41	3,0
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,69
180	11	q ₂₀₀	24,94	19,22	15,34	12,52	10,38	8,71	7,38	6,30	5,41	4,67	4,06	3,54	3,11	2,73	2,42	2,14	1,91	1,70	1,50
		9 ₁₀₀	49,88	38,45	30,68	25,04	20,76	17,42	14,76	12,60	10,82	9,35	8,12	7,09	6,22	5,47	4,84	4,29	3,82	3,41	3,0
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
		q ₂₀₀	24,94	19,22	15,34	12,52	10,38	8,71	7,38	6,30	5,41	4,67	4,06	3,54	3,11	2,73	2,42	2,14	1,91	1,70	1,50
		9 ₁₀₀	49,88	38,45	30,68	25,04	20,76	17,42	14,76	12,60	10,82	9,35	8,12	7,09	6,22	5,47	4,84	4,29	3,82	3,41	3,06
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,69
	1	9 ₂₀₀	27,92	21,60	17,30	14,18	11,81	9,95	8,47	7,26	6,26	5,43	4,74	4,15	3,65	3,22	2,86	2,54	2,27	2,03	1,8
		q ₁₀₀	55,85	43,21	34,61	28,36	23,62	19,91	16,94	14,52	12,53	10,87	9,48	8,31	7,31	6,45	5,72	5,09	4,55	4,07	3,66
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
200	11	9 ₂₀₀	27,92	21,60	17,30	14,18	11,81	9,95	8,47	7,26	6,26	5,43	4,74	4,15	3,65	3,22	2,86	2,54	2,27	2,03	1,8
		q ₁₀₀	55,85	43,21	34,61	28,36	23,62	19,91	16,94	14,52	12,53	10,87	9,48	8,31	7,31	6,45	5,72	5,09	4,55	4,07	3,6
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
		9 ₂₀₀	27,92	21,60	17,30	14,18	11,81	9,95	8,47	7,26	6,26	5,43	4,74	4,15	3,65	3,22	2,86	2,54	2,27	2,03	1,8
		q ₁₀₀	55,85	43,21	34,61	28,36	23,62	19,91	16,94	14,52	12,53	10,87	9,48	8,31	7,31	6,45	5,72	5,09	4,55	4,07	3,6
		q _{dop}	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1,38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0,76	0,72	0,6
		q ₂₀₀	32,41	25,17	20,26	16,69	13,97	11,84	10,13	8,73	7,58	6,61	5,79	5,10	4,50	4,00	3,56	3,18	2,84	2,56	2,3
		q ₁₀₀	64,82	50,35	40,52	33,38	27,95	23,69	20,27	17,47	15,16	13,22	11,59	10,20	9,01	8,00	7,12	6,36	5,69	5,12	4,6
		q _{dop}	3.80	3.04	2.53	2,17	1.90	1.69	1.52	1.38	1.26	1.17	1.08	1.01	0.95	0.89	0,84	0.80	0.76	0.72	0.6
230		q ₂₀₀	32.41	25,17	20.26	16,69	13,97	11.84	10,13	8,73	7,58	6,61	5,79	5,10	4,50	4,00	3,56	3,18	2,84	2,56	2,3
		q ₁₀₀		50,35	•••••	33,38		23,69	••••••	17,47		13,22	•••••	10,20	9,01	8,00	7,12	6,36	5,69	5,12	4,6
		q ₁₀₀	3,80	3,04	2,53	2,17	1,90	1,69	1,52	1.38	1,26	1,17	1,08	1,01	0,95	0,89	0,84	0,80	0.76	0,72	0,6
		Ч _{дор} 		25,17				11,84	10,13		7,58	6,61	5,79	5,10	4,50	4,00	3,56	3,18	2.84	2,56	2,3
						••••••	•••••		••••••	•••••	•••••	13,22	•••••		9,01	8,00	7,12	6,36	5,69	5,12	4,6
		q ₁₀₀	04,02	50,55	40,52	00,00	21,55	25,09	20,21	17,47	13,10	13,22	1,59	10,20	9,01	0,00	7,12	0,50	5,09	5,12	4,0

Hint:

- qdop maximum characteristic load in the bearing limit
- q200 maximum characteristic load at the limit of applicability (diffraction conditions L / 200)
- q100 maximum characteristic load at the limit of applicability (diffraction conditions L/100)

Color groups:

- I very light colors
- II light colors
- III dark colors

Linear support is assumed. Panels attached with a loop through connectors with aluminum or steel pads. Support width: min. 40mm.

MWF mineral wool wall panels. 1 span arrangement - maximum characteristic loads for MW-W-ST sandwich panels with mineral wool core, in claddings of 0,50 / 0,50 mm thickness. Direction of force - FROM THE SUPPORT.

			1		MW	'F m	iner	al w	ool v	vall	pan	els									
Core	Colour	Condition				_		Μ	laxim	um lo	ads [l	«N/m²] for t	he sp	an L[r	n]				_	
hickness	group	Condition	1,20	1,50	1,80	2,10	2,40	2,70	3,00	3,30	3,60	3,90	4,20	4,50	4,80	5,10	5,40	<mark>5,7</mark> 0	6,00	6,30	6,60
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,80	-1,49	-1,25	-1,07	-0,92	-0,80	-0,70	-0,62	-0,55	-0,50	-0,45	-0,41	-0,37
	1	q ₂₀₀	-14,56	-10,46	-7,75	-5,87	-4,53	-3,55	-2,83	-2,28	-1,85	-1,49	-1,20	-0,98	-0,80	-0,66	-0,55	-0,44	-0,34	-0,27	-0,00
		q ₁₀₀	-29,13	-20,93	-15,51	-11,75	-9,07	-7,11	-5,66	-4,56	-3,71	-3,06	-2,54	-2,13	-1,81	-1,54	-1,32	-1,14	-0,99	-0,87	-0,76
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,80	-1,49	-1,25	-1,07	-0,92	-0,80	-0,70	-0,62	-0,55	-0,50	-0,45	-0,41	-0,37
	Ш	9 ₂₀₀	-14,56	-10,46	-7,75	-5,87	-4,53	-3,55	-2,73	-2,12	-1,66	-1,31	-1,01	-0,74	-0,53	-0,38	-0,26	-0,16	-0,09	-0,03	-0,00
80		q ₁₀₀	-29,13	-20,93	-15,51	-11,75	-9,07	-7,11	-5,66	-4,56	-3,71	-3,06	-2,54	-2,13	-1,81	-1,54	-1,32	-1,13	-0,96	-0,82	-0,71
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,80	-1,49	-1,25	-1,07	-0,92	-0,80	-0,70	-0,62	-0,55	-0,50	-0,45	-0,41	-0,37
	Ш	q ₂₀₀	-14,56	-10,46	-7,75	-5,76	-4,22	-3,13	-2,33	-1,56	-1,01	-0,62	-0,33	-0,13	-0,00	-0,00	-0,00	-0,00	-0,00	-0,00	-0,00
		q ₁₀₀	-29,13	-20,93	-15,51	-11,75	-9,07	-7,11	-5,66	-4,56	-3,71	-3,06	-2,49	-2,04	-1,68	-1,39	-1,16	-0,98	-0,82	-0,65	-0,52
		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	2	2	2
		R _{Amin} [kN]	-4,51	-4,52	-4,51	-4,52	-4,51	-4,52	-4,48	-4,08	-3,74	-3,47	-3,22	-3,01	-2,81	-2,65	-2,49	-2,40	-2,28	-2,18	-2,07
		1	-4,55		-3,03	-2,60	-2,27		-1,82		-1,51	-1,34		-1,00	-0,88	-0,78	-0,70	-0,62	-0,56	-0,51	-0,46
	1	q _{dop}							•••••	•••••	•••••	-2,25		-1,59			•••••	-0,02	•••••		
	1	q ₂₀₀		-13,93		•••••	-6,34	-5,03	•••••	-3,30	-2,71			••••••	-1,33	-1,11	-0,94	•••••	-0,67	-0,58	-0,49
		q ₁₀₀	1922-000	-27,87	201000	1000000			-8,11	-6,60	-5,42	-4,50	-3,77	-3,18	-2,71	-2,32	-2,00	-1,73	-1,51	-1,33	-1,17
		9 _{dop}	-4,55		-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,34	-1,15	-1,00	-0,88	-0,78	-0,70	-0,62	-0,56	-0,51	-0,46
	11	9 ₂₀₀		-13,93			-6,34	-5,03	-4,05	-3,30	•••••	-2,14	-1,74	-1,42	-1,17	- <mark>0,97</mark>	-0,76	-0,59	-0,45	-0,34	-0,25
100		q ₁₀₀	in the second	-27,87					-8,11	-6,60	-5,42	-4,50	-3,77	-3,18	-2,71	-2,32	-2,00	-1,73	-1,51	-1,33	-1,17
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,34	-1,15	-1,00	-0,88	-0,78	-0,70	-0,62	-0,56	-0,51	-0,46
	III	q ₂₀₀	-19,06	-13,93	-10,50	-8,09	-6,34	-4,89	-3,78	-2,94	-2,31	-1,74	-1,24	-0,87	-0,59	-0,38	-0,21	-0,09	-0,00	-0,00	-0,00
		q ₁₀₀	-38,13	-27,87	-21,01	-16,19	-12,68	-10,07	-8,11	-6,60	-5,42	-4,50	-3,77	-3,18	-2,71	-2,30	-1,94	-1,65	-1,41	-1,21	-1,04
		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2
		R _{Amin} [kN]	-4,51	-4,52	-4,51	-4,52	-4,51	-4,52	-4,53	-4,52	-4,51	-4,34	-4,02	-3,75	-3,52	-3,32	-3,16	-2,96	-2,82	-2,70	-2,56
		9 _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,06	-0,94	-0,84	-0,75	-0,68	-0,61	-0,56
	I	q ₂₀₀	-23,61	-17,48	-13,34	-10,41	-8,25	-6,62	-5,38	-4,42	-3,66	-3,06	-2,57	-2,18	-1,87	-1,61	-1,39	-1,19	-1,02	-0,88	-0,77
		q ₁₀₀	-47,23	-34,96	-26,69	-20,82	-16,50	-13,25	-10,77	-8,84	-7,32	-6,12	-5,15	-4,37	-3,74	-3,22	-2,78	-2,42	-2,12	-1,86	-1,65
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,06	-0,94	-0,84	-0,75	-0,68	-0,61	-0,56
	11	q ₂₀₀	-23,61	-17,48	-13,34	-10,41	-8,25	-6,62	-5,38	-4,42	-3,66	-3,06	-2,56	-2,12	-1,76	-1,48	-1,24	-1,05	-0,90	-0,75	-0,61
120		q ₁₀₀	-47,23	-34,96	-26,69	-20,82	-16,50	-13,25	-10,77	-8,84	-7,32	-6,12	-5,15	-4,37	-3,74	-3,22	-2,78	-2,42	-2,12	-1,86	-1,65
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,06	-0,94	-0,84	-0,75	-0,68	-0,61	-0,56
	Ш	q ₂₀₀		-17,48			-8,25	-6,62	-5,38	-4,27	-3,41	-2,75	-2,23	-1,82	-1,38	-1,04	-0,77	-0,55	-0,39	-0,25	-0,15
		q ₁₀₀		-34,96							-7,32	-6,12	-5,15	-4,37	-3,74	-3,22	-2,78	-2,42	-2,12	-1,83	-1,59
		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
-		R _{Amin} [kN]	-4,51	-4,52	-4,51	-4,52	-4,51	-4,52	-4,53	-4,52	-4,51	-4,54	-4,54	-4,53	-4,24	-4,00	-3,79	-3,57	-3,42	-3,22	-3,10
	1	7.83	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,53	-1,29	-1,10	-0,94	-0,82	-0,72	-0,64	-0,57	-0,51	-0,46	-0,42	-0,38
	1	q _{dop}		-19,26			-9,23	-7,45	-6,08	-5,01	-4,16	-3,49	-2,95	-2,51	-2,15	-1,85	-1,60	-1,40	-1,22	-1,06	-0,92
		q ₂₀₀		-19,20		•••••	-9,23			-10,02	-4,10	-5,49		-2,51			-1,60	-1,40	-1,22	-2,16	
·		q ₁₀₀											-5,90		-4,30	-3,70					-1,91
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,53	-1,29	-1,10	-0,94	-0,82	-0,72	-0,64	-0,57	-0,51	-0,46	-0,42	-0,38
120	11	9 ₂₀₀		-19,26		•••••	-9,23	-7,45	-6,08	-5,01	-4,16	-3,49	-2,95	-2,50	-2,09	-1,76	-1,49	-1,27	-1,08	-0,93	-0,80
130		q ₁₀₀	11111	-38,53	10 10 10							-6,98	-5,90	-5,02	-4,30	-3,70	-3,21	-2,80	-2,45	-2,16	-1,91
		q _{dop}	-4,55	-3,64	-3,03	•••••	-2,27	-2,02	-1,82	-1,53	-1,29	-1,10	-0,94	-0,82	-0,72	-0,64	-0,57	-0,51	-0,46	-0,42	-0,38
	III	4 ₂₀₀		-19,26		•••••		••••••	•••••		•••••			••••••		•••••	•••••	•••••	•••••	••••••	•••••
		q ₁₀₀		-38,53									-5,90	-5,02	-4,30	-3,70	-3,21		-2,45	10.1	100
		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	2	2
		R _{Amin} [kN]	-4,51	-4,52	-4,51	-4,52	-4,51	-4,52	-4,53	-4,19	-3,86	-3,57	-3,29	-3,08	-2,89	-2,73	-2,58	-2,45	-2,33	-2,23	-2,12
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,11	-0,98	-0,88	-0,79	-0,71	-0,64	-0,59
	I.	q ₂₀₀	-18,97	-14,49	-11,44	•••••		•••••		•••••	-3,77	••••••	-2,77	••••••		-1,82		•••••		-1,11	-0,98
		q ₁₀₀		-28,98		•••••	•••••	•••••	•••••	•••••	•••••			••••••		-3,65	•••••	•••••	•••••		•••••
		q _{dop}	-	-3,64		_		-2,02				-1,40			-1,11			-0,79	1947	-0,64	
	11	Ч _{дор} 		-14,49				••••••		•••••	•••••	-3,22		••••••		-1,79	•••••		•••••	••••••	
140	-0			-28,98		•••••		•••••		*********	•••••	•••••		••••••		-3,65	•••••	•••••	•••••	•••••	•••••
140	40	q ₁₀₀																-2,65		-2,22	
		q _{dop}		-3,64		•••••		-2,02		•••••	••••••	-1,40		••••••	-1,11	•••••			••••••	••••••	••••••
	ш	q ₂₀₀		-14,49		•••••		-6,27		•••••	•••••	-3,10	-2,59	••••••	-1,83	-1,55		-1,01	-0,79	-0,62	-0,47
		q ₁₀₀	-	-28,98						1.0						-3,65	-	-	10		
		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
		R _{Amin} [kN]	-4,51	-4,52	-4,51	-4,52	-4,51	-4,52	-4,53	-4,52	-4,51	-4,54	-4,54	-4,53	-4,44	-4,17	-3,96	-3,76	-3,56	-3,38	-3,27

		AUUU												-			_				-
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,06	-0,94	-0,84	-0,76	-0,69	-0
	I	9 ₂₀₀	-20,46	-15,67	-12,41	-10,05	-8,26	-6,87	-5,77	-4,89	-4,17	-3,58	-3,08	-2,68	-2,33	-2,04	-1,79	-1,58	-1,40	-1,25	-1
		q ₁₀₀	-40,93	-31,34	24,82	-20,10	-16,53	-13,75	-11,55	-9,78	-8,34	-7,16	-6,17	-5,36	-4,67	-4,09	-3,59	-3,17	-2,81	-2,50	-2
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,06	-0,94	-0,84	-0,76	-0,69	-0
	II	9 ₂₀₀	-20,46	-15,67	-12,41	-10,05	-8,26	-6,87	-5,77	-4,89	-4,17	-3,58	-3,08	-2,68	-2,33	-2,04	-1,77	-1,53	-1,33	-1,16	-1
150		9 ₁₀₀	-40,93	-31,34	-24,82	-20,10	-16,53	13,75	11,55	-9,78	-8,34	-7,16	-6,17	-5,36	-4,67	-4,09	-3,59	-3,17	-2,81	-2,50	-2
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,06	-0,94	-0,84	-0,76	-0,69	-0
	III		-20,46	-15,67	-12,41	-10,05	-8,26	-6,87	-5,77	-4,89	-4,17	-3,53	-2,96	-2,50	-2,11	-1,80	-1,53	-1,29	-1,04	-0,83	-(
Ļ		q ₁₀₀	-40,93	-31,34	-24,82	-20,10	-16,53	-13,75	-11,55	-9,78	-8,34	-7,16	-6,17	-5,36	-4,67	-4,09	-3,59	-3,17	-2,81	-2,50	-2
		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
		R _{Amin} [kN]	-4,51	-4,52	-4,51	-4,52	-4,51	-4,52	-4,53	-4,52	-4,51	-4,54	-4,54	-4,53	-4,51	-4,50	-4,23	-4,00	-3,81	-3,64	-
			-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,90	-0,81	-0,74	-
	L L	9 ₂₀₀	-21,95	-16,85	-13,38	-10,87	-8,96	-7,48	-6,30	-5,35	-4,58	-3,94	-3,40	-2,96	-2,58	-2,27	-2,00	-1,77	-1,57	-1,40	-
Ļ		q ₁₀₀	-43,91	-33,71	-26,77	-21,74	-17,93	-14,97	-12,61	-10,71	-9,16	-7,88	-6,81	-5,92	-5,17	-4,54	-4,00	-3,54	-3,14	-2,80	-
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,90	-0,81	-0,74	-
	Ш	9 ₂₀₀	-21,95	-16,85	-13,38	-10,87	-8,96	-7,48	-6,30	-5,35	-4,58	-3,94	-3,40	-2,96	-2,58	-2,27	-2,00	-1,74	-1,52	-1,33	-
160		q ₁₀₀	-43,91	-33,71	-26,77	-21,74	-17,93	-14,97	-12,61	-10,71	-9,16	-7,88	-6,81	-5,92	-5,17	-4,54	-4,00	-3,54	-3,14	-2,80	-
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,90	-0,81	-0,74	
	111	q ₂₀₀	-21,95	-16,85	-13,38	-10,87	-8,96	-7,48	-6,30	-5,35	-4,58	-3,94	-3,35	-2,84	-2,41	-2,06	-1,76	-1,52	-1,31	-1,07	-
		q ₁₀₀	-43,91	-33,71	-26,77	-21,74	-17,93	-14,97	-12,61	-10,71	-9,16	-7,88	-6,81	-5,92	-5,17	-4,54	-4,00	-3,54	-3,14	-2,80	-
Ļ		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
		R _{Amin} [kN]	-4,51	-4,52	-4,51	-4,52	-4,51	-4,52	-4,53	-4,52	-4,51	-4,54	-4,54	-4,53	-4,51	-4,54	-4,54	-4,28	-4,06	-3,90	-
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,95	-0,91	-0,83	-
	1	q ₂₀₀	-24,94	-19,22	-15,34	-12,52	-10,38	-8,71	-7,38	-6,30	-5,41	-4,67	-4,06	-3,54	-3,11	-2,73	-2,42	-2,14	-1,91	-1,70	-
		q ₁₀₀	-49,88	-38,45	-30,68	-25,04	-20,76	-17,42	-14,76	-12,60	-10,82	-9,35	-8,12	-7,09	-6,22	-5,47	-4,84	-4,29	-3,82	-3,41	
ſ		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,95	-0,91	-0,83	-
	Ш	q ₂₀₀	-24,94	-19,22	-15,34	-12,52	-10,38	-8,71	-7,38	-6,30	-5,41	-4,67	-4,06	-3,54	-3,11	-2,73	-2,42	-2,14	-1,91	-1,70	-
180		9 ₁₀₀	-49,88	-38,45	-30,68	-25,04	-20,76	-17,42	-14,76	-12,60	-10,82	-9,35	-8,12	-7,09	-6,22	-5,47	-4,84	-4,29	-3,82	-3,41	-
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,95	-0,91	-0,83	-
	III	q ₂₀₀	-24,94	-19,22	-15,34	-12,52	-10,38	-8,71	-7,38	-6,30	-5,41	-4,67	-4,06	-3,54	-3,04	-2,62	-2,26	-1,96	-1,70	-1,48	-
		q ₁₀₀	-49,88	-38,45	-30,68	-25,04	-20,76	-17,42	-14,76	-12,60	-10,82	-9,35	-8,12	-7,09	-6,22	-5,47	-4,84	-4,29	-3,82	-3,41	-
		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
		R _{Amin} [kN]	-4,51	-4,52	-4,51	-4,52	-4,51	-4,52	-4,53	-4,52	-4,51	-4,54	-4,54	-4,53	-4,51	-4,54	-4,54	-4,51	-4,55	-4,37	
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,95	-0,91	-0,86	-
	L L	9 ₂₀₀	-27,92	-21,60	-17,30	-14,18	-11,81	-9,95	-8,47	-7,26	-6,26	-5,43	-4,74	-4,15	-3,65	-3,22	-2,86	-2,54	-2,27	-2,03	
		q ₁₀₀	-55,85	-43,21	-34,61	-28,36	-23,62	-19,91	-16,94	-14,52	-12,53	-10,87	-9,48	-8,31	-7,31	-6,45	-5,72	-5,09	-4,55	-4,07	-
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,95	-0,91	-0,86	
	- 11	9 ₂₀₀	-27,92	-21,60	-17,30	-14,18	-11,81	-9,95	-8,47	-7,26	-6,26	-5,43	-4,74	-4,15	-3,65	-3,22	-2,86	-2,54	-2,27	-2,03	
200		q ₁₀₀	-55,85	-43,21	-34,61	-28,36	-23,62	-19,91	-16,94	-14,52	-12,53	-10,87	-9,48	-8,31	-7,31	-6,45	-5,72	-5,09	-4,55	-4,07	-
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	- <mark>2,0</mark> 2	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,95	-0,91	-0,86	
	Ш	q ₂₀₀	-27,92	-21,60	-17,30	-14,18	-11,81	-9,95	-8,47	-7,26	-6,26	-5,43	-4,74	-4,15	-3,65	-3,21	-2,79	-2,43	-2,12	-1,86	
		q ₁₀₀	-55,85	-43,21	-34,61	-28,36	-23,62	-19,91	-16,94	-14,52	-12,53	-10,87	-9,48	-8,31	-7,31	-6,45	-5,72	-5,09	-4,55	-4,07	
		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
		R _{Amin} [kN]	-4,51	- <mark>4,</mark> 52	-4,51	-4,52	-4,51	-4,52	-4,53	-4,52	-4,51	-4,54	-4,54	-4,53	-4,51	-4,54	-4,54	-4,51	-4,55	-4,52	-
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,95	-0,91	-0,86	-
	I I	q ₂₀₀	-32,41	-25,17	-20,26	-16,69	-13,97	-11,84	-10,13	-8,73	-7,58	-6,61	-5,79	-5,10	-4,50	-4,00	-3,56	-3,18	-2,84	-2,56	-
		q ₁₀₀	-64,82	-50,35	-40,52	-33,38	-27,95	-23,69	-20,27	-17,47	-15,16	-13,22	-11,59	-10,20	-9,01	-8,00	-7,12	-6,36	-5,69	-5,12	-
-		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,95	-0,91	-0,86	-
	11	q ₂₀₀	-32,41	-25,17	-20,26	-16,69	-13,97	-11,84	-10,13	-8,73	-7,58	-6,61	-5,79	-5,10	-4,50	-4,00	-3,56	-3,18	-2,84	-2,56	
230		q ₁₀₀	-64,82	-50,35	-40,52	-33,38	-27,95	-23,69	-20,27	-17,47	-15,16	-13,22	-11,59	-10,20	-9,01	-8,00	-7,12	-6,36	-5,69	-5,12	
		q _{dop}	-4,55	-3,64	-3,03	-2,60	-2,27	-2,02	-1,82	-1,65	-1,51	-1,40	-1,30	-1,21	-1,13	-1,07	-1,01	-0,95	-0,91	-0,86	
	Ш	9 ₂₀₀	-32,41	-25,17	-20,26	-16,69	-13,97	-11,84	-10,13	-8,73	-7,58	-6,61	-5,79	- <mark>5,10</mark>	-4,50	-4,00	-3,56	-3,18	-2,81	-2,48	-
	Ш	9 ₁₀₀	-64,82	-50,35	-40,52	-33,38	-27,95	-23,69	-20,27	-17,47	-15,16	-13,22	-11,59	-10,20	-9,01	-8,00	-7,12	-6,36	-5,69	-5,12	-
		100	_			_			28		1	122			1	1922		-	2	3	
-		A [pcs]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	

Hint:

- qdop maximum characteristic load in the bearing limit
- q200 maximum characteristic load at the limit of applicability (diffraction conditions L / 200)
- q100 maximum characteristic load at the limit of applicability (diffraction conditions L/100)
- A arithmetic product of factors for one support
- RAmin reaction to one support, which must be carried by the factors

Color groups:

- I very light colors
- II light colors
- III dark colors

Linear support is assumed. Panels attached with a loop through connectors with aluminum or steel pads. Support width: min. 40mm.

MWF mineral wool wall panels. A single span system - maximum expected bearing load of sandwich panels with mineral wool core in 0.50 / 0.50 mm thick claddings. Direction of force - TO THE SUPPORT.(8)

					MW	Fm	iner	al wo	v loc	vall	pane	els									
Core	Colour	Condition						М	axim	um lo	ads [k	N/m²] for t	he sp	an L[r	n]					
thickness	group	Condition	1,20	1,50	1,80	2,10	2,40	2,70	3,00	3,30	3,60	3,90	4,20	4,50	4,80	5,10	5,40	5,70	6,00	6,30	6,60
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,45	0,41	0,37
	1	9 ₂₀₀	13,17	9,48	7,04	5,34	4,13	3,24	2,49	1,93	1,51	1,20	0,93	0,68	0,49	0,34	0,23	0,15	0,08	0,03	0,00
		q ₁₀₀	26,35	18,97	14,08	10,69	8,26	6,48	5,16	4,16	3,39	2,80	2,33	1,95	1,65	1,41	1,21	1,03	0,88	0,76	0,65
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,45	0,41	0,37
80	II .	9 ₂₀₀	13,17	9,48	7,04	5,34	4,13	3,24	2,49	1,93	1,51	1,20	0,93	0,68	0,49	0,34	0,23	0,15	0,08	0,03	0,00
		q ₁₀₀	26,35	18,97	14,08	10,69	8,26	6,48	5,16	4,16	3,39	2,80	2,33	1,95	1,65	1,41	1,21	1,03	0,88	0,76	0,65
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,45	0,41	0,37
	III .	9 ₂₀₀	13,17	9,48	7,04	5,34	4,13	3,24	2,49	1,93	1,51	1,20	0,93	0,68	0,00	0,00	0,00	0,00	0,00	0,00	0,00
		9 ₁₀₀	26,35	18,97	14,08	10,69	8,26	6,48	5,16	4,16	3,39	2,80	2,33	1,95	1,65	1,41	1,21	1,03	0,88	0,76	0,65
		9 _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
	1	9 ₂₀₀	••••	12,61	9,52	7,35	5,76	4,58	3,69	3,01	2,43	1,96	1,59	1,30	1,07	0,89	0,70	0,54	0,41	0,31	0,23
		q ₁₀₀	34,47	25,23	19,05	14,7	11,53	9,17	7,39	6,02	4,95	4,11	3,45	2,91	2,48	2,12	1,83	1,59	1,39	1,22	1,07
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
100	II .	q ₂₀₀	17,23	12,61	9,52	7,35	5,76	4,58	3,69	3,01	2,43	1,96	1,59	1,30	1,07	0,89	0,7	0,54	0,41	0,31	0,23
		q ₁₀₀	34,47	25,23	19,05	14,7	11,53	9,17	7,39	6,02	4,95	4,11	3,45	2,91	2,48	2,12	1,83	1,59	1,39	1,22	1,07
		9 _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
	III .	9 ₂₀₀	17,23	12,61	9,52	7,35	5,76	4,58	3,69	3,01	2,43	1,96	1,59	1,30	1,07	0,89	0,70	0,54	0,00	0,00	0,00
		q ₁₀₀	34,47	25,23	19,05	14,7	11,53	9,17	7,39	6,02	4,95	4,11	3,45	2,91	2,48	2,12	1,83	1,59	1,39	1,22	1,07
		۹ _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
		9 ₂₀₀	21,33	••••••	12,09	9,44	7,49	6,02	4,90	4,02	3,34	2,79	2,34	1,94	1,61	1,35	1,14	0,96	0,82	0,69	0,55
		9 ₁₀₀				18,88	14,99	12,05	9,80	8,05	6,68	5,58	4,71	4,00	3,42	2,94	2,55	2,22	1,94	1,71	1,51
		9 _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
120	Ш	9 ₂₀₀			12,09	9,44	7,49	6,02	4,90	4,02	3,34	2,79	2,34	1,94	1,61	1,35	1,14	0,96	0,82	0,69	0,55
		q ₁₀₀	-	31,62		18,88	14,99	12,05	9,80	8,05	6,68	5,58	4,71	4,00	3,42	2,94	2,55	2,22	1,94	1,71	1,51
		9 _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
	ш	9 ₂₀₀		15,81	12,09	9,44	7,49	6,02	4,90	4,02	3,34	2,79	2,34	1,94	1,61	1,35	1,14	0,96	0,82	0,69	0,55
		q ₁₀₀	42,66			18,88	14,99	12,05	9,80	8,05	6,68	5,58	4,71	4,00	3,42	2,94	2,55	2,22	1,94	1,71	1,51
		9 _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
	I .	9 ₂₀₀	23,39	17,42	13,39	10,51	8,38	6,77	5,53	4,56	3,79	3,18	2,69	2,28	1,91	1,61	1,36	1,16	0,99	0,85	0,73
		q ₁₀₀	46,78		26,78	-	16,77	13,55	11,06	9,12	7,59	6,37	5,38	4,58	3,93	3,39	2,94	2,56	2,25	1,98	1,75
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,5	0,47	0,45	0,43
130	Ш.	9 ₂₀₀	••• •••••••	17,42		10,51	8,38	6,77	5,53	4,56	3,79	3,18	2,69	2,28	1,91	1,61	1,36	1,16	0,99	0,85	0,73
		q ₁₀₀	46,78		26,78		16,77	13,55	11,06	9,12	7,59	6,37	5,38	4,58	3,93	3,39	2,94	2,56	2,25	1,98	1,75
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
	III .	9 ₂₀₀	23,39	17,42	13,39	10,51	8,38	6,77	5,53	4,56	3,79	3,18	2,69	2,28	1,91	1,61	1,36	1,16	0,99	0,85	0,73
		q ₁₀₀	46,78	34,85	26,78	21,02	16,77	13,55	11,06	9,12	7,59	6,37	5,38	4,58	3,93	3,39	2,94	2,56	2,25	1,98	1,75
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
	I.	q ₂₀₀	17,69	13,5	10,65	8,59	7,03	5,83	4,88	4,11	3,49	2,99	2,57	2,22	1,93	1,65	1,42	1,22	1,06	0,92	0,8
		q ₁₀₀	35,39		21,31	17,18	14,07	11,66	9,76	8,23	6,99	5,98	5,14	4,45	3,87	3,38	2,96	2,61	2,31	2,05	1,83
1.10		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
140	Ш	q ₂₀₀	17,69	13,5	10,65	8,59	7,03	5,83	4,88	4,11	3,49	2,99	2,57	2,22	1,93	1,65	1,42	1,22	1,06	0,92	0,80
		q ₁₀₀	35,39		21,31	17,18	14,07	11,66	9,76	8,23	6,99	5,98	5,14	4,45	3,87	3,38	2,96	2,61	2,31	2,05	1,83
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,43
	ш	q ₂₀₀	17,69	13,5	10,65	8,59	7,03	5,83	4,88	4,11	3,49	2,99	2,57	2,22	1,93	1,65	1,42	1,22	1,06	0,92	0,8
		q ₁₀₀	35,39	27,01	21,31	17,18	14,07	11,66	9,76	8,23	6,99	5,98	5,14	4,45	3,87	3,38	2,96	2,61	2,31	2,05	1,83

	+ +	199				-	_		-		-				-	-			-		-
		9 _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,4
	l	q ₂₀₀	19,08	14,61	11,56	9,35	7,68	6,39	5,36	4,54	3,87	3,32	2,86	2,48	2,16	1,89	1,63	1,41	1,23	1,07	0,9
		q ₁₀₀	38,17		23,12	18,71	15,37	12,78	10,73	9,08	7,74	6,64	5,72	4,96	4,32	3,78	3,32	2,93	2,60	2,31	2,0
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,4
150	II	9 ₂₀₀		14,61	11,56		7,68	6,39	5,36	4,54	3,87	3,32	2,86	2,48	2,16	1,89	1,63	1,41	1,23	1,07	0,9
		q ₁₀₀	38,17	29,22	23,12	18,71	15,37	12,78	10,73	9,08	7,74	6,64	5,72	4,96	4,32	3,78	3,32	2,93	2,60	2,31	2,0
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,4
	III	9 ₂₀₀	19,08	14,61	11,56	9,35	7,68	6,39	5,36	4,54	3,87	3,32	2,86	2,48	2,16	1,89	1,63	1,41	1,23	1,07	0,9
		q ₁₀₀	38,17	29,22	23,12	18,71	15,37	12,78	10,73	9,08	7,74	6,64	5,72	4,96	4,32	3,78	3,32	2,93	2,60	2,31	2,0
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,5	0,47	0,45	0,
	I	q ₂₀₀	20,48	15,71	12,47	10,12	8,34	6,96	5,86	4,97	4,25	3,65	3,15	2,74	2,39	2,10	1,85	1,61	1,41	1,23	1,
		q ₁₀₀	40,96	31,42	24,94	20,24	16,68	13,92	11,72	9,94	8,50	7,3	6,31	5,48	4,79	4,20	3,70	3,27	2,90	2,58	2,
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
160	II	9 ₂₀₀	20,48	15,71	12,47	10,12	8,34	6,96	5,86	4,97	4,25	3,65	3,15	2,74	2,39	2,10	1,85	1,61	1,41	1,23	1,
		q ₁₀₀	40,96	31,42	24,94	20,24	16,68	13,92	11,72	9,94	8,50	7,3	6,31	5,48	4,79	4,20	3,70	3,27	2,90	2,58	2,
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
	III	q ₂₀₀	20,48	15,71	12,47	10,12	8,34	6,96	5,86	4,97	4,25	3,65	3,15	2,74	2,39	2,10	1,85	1,61	1,41	1,23	1,
		q ₁₀₀	40,96	31,42	24,94	20,24	16,68	13,92	11,72	9,94	8,50	7,30	6,31	5,48	4,79	4,20	3,70	3,27	2,90	2,58	2,
	i i	q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
	1	q ₂₀₀	23,26	17,92	14,29	11,66	9,66	8,10	6,86	5,85	5,02	4,34	3,76	3,28	2,88	2,53	2,24	1,98	1,76	1,57	1,
	50.0	q ₁₀₀	46,53	35,85	28,59	23,32	19,32	16,21	13,72	11,70	10,05	8,68	7,53	6,57	5,76	5,07	4,48	3,97	3,53	3,16	2,
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
180		q ₂₀₀	23,26	•••••	••••••	11,66	9,66	8,10	6,86	5,85	5,02	4,34	3,76	3,28	2,88	2,53	2,24	1,98	1,76	1,57	1,
		q ₁₀₀	46.53	35,85	28,59	23.32	19,32	16,21	•••••	11,70	10,05	8,68	7,53	6,57	5,76	5,07	4,48	3,97	3,53	3,16	2,
			2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
		q _{dop} q ₂₀₀		17,92	•••••	11,66	9,66	8,10	6,86	5,85	5,02	4,34	3,76	3,28	2,88	2,53	2,24	1,98	1,76	1,57	1,
		q ₁₀₀		35,85	28,59		19,32	16,21	13,72		10,05	8,68	7,53	6,57	5,76	5,07	4,48	3,97	3,53	3,16	2,
		q ₁₀₀ q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
	1			20,14	16,12		10,99	9,26	7,87	6,75	5,82	5,04	4,40	3,85	3,38	2,99	2,65	2,35	2,10	1,88	1,
	• • • • •	q ₂₀₀	52,1	40,29	32,25	26,42	21,99	18,52	15,75	13,50	11,64	10,09	8,80	7,70	6,77	5,98	5,30	4,71	4,20	3,76	3,
		q ₁₀₀	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
200		q _{dop}	26,05	20,14	16,12	•••••	10,99	9,26	7,87	6,75	5,82	5,04	4,40	3,85	3,38	2,99	2,65	2,35	2,10	1,88	1,
200		9 ₂₀₀	52,1	40,29	32,25		21,99	18,52	15,75	13,5	11,64	10,09	8,80	7,70	6,77	5,98	5,30	4,71	4,20	3,76	3,
		q ₁₀₀	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
		q _{dop}			••••••						5,82				•••••	•••••		•••••	•••••		
		9 ₂₀₀		20,14	16,12		10,99	9,26	7,87	6,75	•••••	5,04	4,40	3,85	3,38	2,99	2,65	2,35	2,10	1,88	1,
		q ₁₀₀	52,1	40,29	32,25	26,42	21,99	18,52	15,75	13,5	11,64	10,09	8,80	7,70	6,77	5,98	5,30	4,71	4,20	3,76	3,
		9 _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
	I	9 ₂₀₀	30,23	23,47	18,88	15,55	13,01	11,02	9,42	8,12	7,04	6,14	5,37	4,73	4,18	3,70	3,29	2,94	2,63	2,36	2,
		q ₁₀₀	60,47	46,95		31,10	26,03	22,05	18,85		14,08	12,28	10,75	9,46	8,36	7,41	6,59	5,89	5,27	4,73	4,
226		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
230		9 ₂₀₀	30,23		18,88	15,55	13,01	11,02	9,42	8,12	7,04	6,14	5,37	4,73	4,18	3,70	3,29	2,94	2,63	2,36	2,
		q ₁₀₀	60,47	46,95	37,77		26,03	1000	18,85	100 million 100 million	14,08		10,75	9,46	8,36	7,41	6,59	5,89	5,27	4,73	4,
		q _{dop}	2,38	1,90	1,58	1,36	1,19	1,05	0,95	0,86	0,79	0,73	0,68	0,63	0,59	0,56	0,52	0,50	0,47	0,45	0,
		9 ₂₀₀	30,23	23,47	18,88	15,55	13,01	11,02	9,42	8,12	7,04	6,14	5,37	4,73	4,18	3,70	3,29	2,94	2,63	2,36	2,
		q ₁₀₀	60,47	46,95	37,77	31,10	26,03	22,05	18,85	16,24	14,08	12,28	10,75	9,46	8,36	7,41	6,59	5,89	5,27	4,73	4,2

Key:

qdop - maximum characteristic load in the bearing capacity limit

q200 - maximum characteristic load in the usability limit (diffraction condition L/200)

q100 - maximum characteristic load in the usability limit (diffraction condition L/100)

Colour groups: I - very light colours II - light colours III - dark colours

Linear support has been assumed. Panels mounted by loop through connectors with aluminium or steel washers. Support width: min. 40mm.

MWF mineral wool roofing panels. Multi- span arrangement- maximum characteristic loads for sandwich panels with mineral wool core, in claddings of 0,50 / 0,50 mm thickness Direction of force - TO THE SUPPORT.(10)

			MWF n	nineral	woolı	roofing p	panels.				
Core	Colour				Ma	iximum load	s [kN/m²] fo	or the span	L[m]		
thickness	group	Condition	1,20	1,50	1,80	2,10	2,40	2,70	3,00	3,30	3,60
		q _{dop}	2,53	2,03	1,70	1,46	0,37				
	Ì	q ₂₀₀	38,00	25,53	18,55	14,14	11,11	•••••••		•••••••	
	-	A [pcs]	2	2	2	2	2	••••••	•••••••••••••••••••••••••••••••••••••••	•••••••	
	1	R _{Amin} [kN]	2,50	2,31	2,08	1,87	1,67				
	Ì	B [pcs]	2	2	2	2	2	•••••••		•••••••	
100/015		R _{Bmin} [kN]	1,69	1,50	1,29	1,08	0,88	••••••		•	
100/145		q _{dop}	1,53	1,47	1,48	1,46	0,37				
	Î	q ₂₀₀	38,00	25,53	18,55	14,14	11,11		••••••••••••••••••••••••		
		A [pcs]	2	2	2	2	2	*******	•••••••••••••••••••		
	11	R _{Amin} [kN]	2,50	2,31	2,08	1,87	1,67		•••••••••••••••••••••••••••••••••••••••		
		B [pcs]	2	2	2	2	2	******		••••••	
	Ĩ	R _{Bmin} [kN]	2,34	2,11	1,84	1,59	1,35	••••••	•••••••••••••••••••••••••••••••••••••••		
		q _{dop}	2,44	1,94	1,62	1,39	0,53				
	ĺ	q ₂₀₀	43,23	29,60	21,86	16,88	13,43	••••••	••••••••••••••••••••••••	••••••	
		A [pcs]	2	2	2	2	2		•••••••••••••••••••••••	•••••••	
	1	R _{Amin} [kN]	2,76	2,59	2,37	2,15	1,93		•••••••••••••••••••••••••••••••••••••••		
	Ĩ	B [pcs]	2	2	2	2	2				
120/105		R _{Bmin} [kN]	1,86	1,69	1,47	1,25	1,04				
120/165		q _{dop}	0,91	0,91	0,99	1,06	0,53				
	Ĩ	q ₂₀₀	43,23	29,60	21,86	16,88	13,43				
		A [pcs]	2	2	2	2	2				
	Ш	R _{Amin} [kN]	2,76	2,59	2,37	2,15	1,93		******		
	Ĩ	B [pcs]	2	2	2	2	2				
		R _{Bmin} [kN]	2,58	2,37	2,11	1,84	1,58				
		q _{dop}	2,53	1,97	1,61	1,36	1,18	1,03	0,66	0,10	
	[q ₂₀₀	38,08	26,09	19,44	15,23	12,33	10,21	8,59	7,31	
	- I	A [pcs]	2	2	2	2	2	2	2	2	
	• [R _{Amin} [kN]	2,38	2,40	2,32	2,19	2,04	1,88	1,73	1,58	
	[B [pcs]	2	2	2	2	2	2	2	2	
150/195		R _{Bmin} [kN]	1,56	1,52	1,40	1,24	1,07	0,89	0,72	0,55	
150/195		q _{dop}	1,62	1,13	0,95	0,89	0,87	0,86	0,66	0,10	
	[q ₂₀₀	38,08	26,09	19,44	15,23	12,33	10,21	8,59	7,31	
	Ш	A [pcs]	2	2	2	2	2	2	2	2	
	ш [R _{Amin} [kN]	2,38	2,40	2,32	2,19	2,04	1,88	1,73	1,58	
	[B [pcs]	2	2	2	2	2	2	2	2	
		R _{Bmin} [kN]	2,19	2,16	2,03	1,85	1,64	1,44	1,23	1,03	
	l	q _{dop}	2,50	1,94	1,58	1,34	1,15	1,01	<mark>0,</mark> 84	0,21	
		9 ₂₀₀	39,78	27,42	20,53	16,14	13,12	10,89	9,19	7,85	
	- I	A [pcs]	2	2	2	2	2	2	2	2	
	1	R _{Amin} [kN]	2,44	2,47	2,40	2,28	2,13	1,97	1,82	1,67	
		B [pcs]	2	2	2	2	2	2	2	2	
160/205		R _{Bmin} [kN]	1,59	1,56	1,45	1,30	1,12	0,94	0,76	0,59	
00/205		q _{dop}	1,48	0,98	0,80	0,75	0,74	0,74	0,75	0,21	
	[q ₂₀₀	39,78	27,42	20,53	16,14	13,12	10,89	9,19	7,85	
	п	A [pcs]	2	2	2	2	2	2	2	2	
	ш [R _{Amin} [kN]	2,44	2,47	2,40	2,28	2,13	1,97	1,82	1,67	
		B [pcs]	2	2	2	2	2	2	2	2	
	[R _{Bmin} [kN]	2,23	2,22	2,10	1,92	1,72	1,51	1,30	1,09	

Key:


- qdop maximum characteristic load in the bearing capacity limit
- q200 maximum characteristic load in the usability limit (diffraction condition L/200)
- A arithmetic product of factors per one support
- RAmin reaction on one support, which must be carried by the factors
- B arithmetic product of factors per one intermediate support
- RBmin reaction on one intermediate support, which must be carried by the factors

Colour groups: I - very bright colours II - bright colours

Linear support has been assumed. Panels mounted by loop through connectors with aluminium or steel washers. Edge support width: min. 40mm. Intermediate support width min. 80mm.

MWF mineral wool roofing panels. Multi- span arrangement- maximum characteristic loads for sandwich panels with mineral wool core, in claddings of 0,50 / 0,50 mm thickness Direction of force - FROM THE SUPPORT(11)

			MWF	minera	al wool	roof pa	nels.				
Core	Colour				Max	imum load	s [kN/m²] fc	or the span	L[m]		
thickness	group	Condition	1,20	1,50	1,80	2,10	2,40	2,70	3,00	3,30	3,60
		q _{dop}	-1,84	-1,53	-1,32	-1,18	-1,06	10			
		9 ₂₀₀	-38,40	-25,92	-18,95	-14,53	-11,50				
		A [pcs]	3	3	2	2	2	••••••	••••••••••••••••••••	*********************	
	1	R _{Amin} [kN]	-3,34	-3,17	-2,97	-2,79	-2,61				
	· · · ·	B [pcs]	3	3	3	3	3				
	-	R _{Bmin} [kN]	-4,52	-4,53	-4,52	-4,54	-4,52	•••••	•••••••••••••••••••••••••••••••••••••••	******	
100/145		1	-1,64	-1,38	-1,21	-1,09	-0,99				
	-	9 _{dop}	-38,40	-25,92	-18,95	-14,53	-11,50				
		A [pcs]	3	3	2	2	2				
	11	R _{Amin} [kN]	-3,25	-3,09	-2,90	-2,72	-2,55		•••••••••••••••••••••••••••••••••••••••		
		B [pcs]	3	3	3	3	3		•••••••••••••••••••••••••••••••••••••••	•••••••	
	-	R _{Bmin} [kN]	-4,52	-4,53	-4,53	-4,54	-4,52		•••••••••••••••••••••	********************	
		q _{dop}	-1,80	-1,49	-1,29	-1,15	-1,05		-		
	-	9 ₂₀₀	-43,67	-30,04	-22,29	-17,32	-13,87				
		A [pcs]	3	3	3	3	2				
	I.	R _{Amin} [kN]	-3,58	-3,43	-3,24	-3,05	-2,87				
		B [pcs]	3	3	3	3			••••••••		
		R _{Bmin} [kN]	-4,52	-4,52	-4,52	-4,52	-4,55		••••••••••••••••••••••		
120/165			-1,58	-1,32	-1,16	-1,05	-0,96				
		q _{dop}	-43,67	-30,04	-22,29	-17,32	-13,87	••••••	•••••••••••••••••••••••••••••••••••••••		
		q ₂₀₀ A [pcs]		3	3	2	2	••••••			
	11	R _{Amin} [kN]	3 -3,48	-3,34	-3,16	-2,97	-2,79				
	1	B [pcs]	3	3,54	3	3	3	••••••			
		R _{Bmin} [kN]	-4,53	-4,52	-4,52	-4,53	-4,52				
			-1,91	-4,52	-4,52	-4,55	-1,06	-0,97	-0,90	-0,84	
		q _{dop}	-38,58	-26,59	-19,94	-15,73	-12,83	-10,71	-9,09	-7,82	
		q ₂₀₀ A [pcs]	-38,58	-20,55	3	3	3	2	-9,09	2	
	L	R _{Amin} [kN]	-3.26	-3,30	-3,23	-3,13	-3,01	-2,87	-2,75	-2,62	
		B [pcs]	3	3,50	3	3	3	3	3	3	
	-	R _{emin} [kN]	-4,53	-4,52	-4,51	-4,53	-4,55	-4,54	-4.55	-4,54	
150/195		Dillin	-1,71	-1,39	-1,19	-1,06	-0,97	-0,89	-0,84	-0,79	
		q _{dop}	-38,58	-26,59	-19,94	-15,73	-12,83	-10,71	-9,09	-7,82	
		9 ₂₀₀ A [pcs]	3	3	3	3	2	2	2	2	
	11	R _{Amin} [kN]	-3,17	-3,20	-3,14	-3,04	-2,93	-2,79	-2,68	-2,56	
		B [pcs]	3	3	3	3		3		3	
		R _{Bmin} [kN]	-4,52	-4,52	-4,51	-4,52	-4,54	-4,52	-4,56	-4,56	
		q _{dop}	-1,90	-1,54	-1,32	-1,16	-1,05	-0,96	-0,90	-0,84	
	Ì	9 ₂₀₀	-40,30	-27,94	-21,05	-16,67	-13,64	-11,42	-9,72	-8,38	
		A [pcs]	3	3	3	3	3	2	2	2	
	1	R _{Amin} [kN]	-3,31	-3,36	-3,32	-3,21	-3,09	-2,96	-2,84	-2,71	
		B [pcs]	3	3	3	3	3	3	3	3	
1	Ì	R _{Bmin} [kN]	-4,52	-4,52	-4,53	-4,51	-4,52	-4,51	-4,56	-4,55	
160/205		q _{dop}	-1,70	-1,38	-1,18	-1,05	-0,96	-0,89	-0,83	-0,78	
	1	9 ₂₀₀	-40,30	-27,94	-21,05	-16,67	-13,64	-11,42	-9,72	-8,38	
		A [pcs]	3	3	3	3	3	2	2	2	
		R _{Amin} [kN]	-3,22	-3,27	-3,22	-3,13	-3,01	-2,89	-2,76	<mark>-2,6</mark> 4	
	ł	B [pcs]	3	3	3	3	3	3	3	3	••••••
		R _{Bmin} [kN]	-4,52	-4,52	-4,51	-4,52	-4,53	-4,55	-4,54	-4,53	

Key:

- qdop maximum characteristic load in the bearing capacity limit
- q200 maximum characteristic load in the usability limit (diffraction condition L/200)
- A arithmetic product of factors per one support
- RAmin reaction on one support, which must be carried by the factors
- B arithmetic product of factors per one intermediate support
- RBmin reaction on one intermediate support, which must be carried by the factors

Wall panels made of EPS polystyrene core. *Maximum load of very bright and light colored 0.50mm thick single strip EPS wall panels. Direction - load towards the support.*

thickness	load as a result				N	laximur	n load,	kN / m	2 in the	range	from [n	n]			
core		2,10	2,40	2,70	3,00	3,30	3,60	3,90	4,20	4,50	4,80	5,10	5,40	5,70	6,00
75	load capacity	3,19	2,44	1,93	1,56	1,29	1,09	0,92	0,8	0,69	0,61	-		-	-
75	stiffness	1,66	1,34	1,1	0,91	0,75	0,63	0,53	0,44	0,37	0,32	-	-	-	-
100	load capacity	-	3,00	2,37	1,92	1,58	1,33	1,13	0,98	0,85	0,75	0,66	0,59	0,53	0,48
100	stiffness	-	1,60	1,34	1,14	0,98	0,84	0,73	0,63	0,55	0,48	0,42	0,37	0,32	0,28
125	load capacity	-	3,76	2,97	2,41	1,99	1,67	1,42	1,23	1,07	0,94	0,83	0,74	0,67	0,60
125	stiffness	-	2,12	1,81	1,55	1,34	1,17	1,02	0,90	0,79	0,70	0,62	0,55	0,49	0,44
150	load capacity	-	-	3,58	2,9	2,39	2,01	1,71	1,48	1,29	1,13	1,00	0,89	0,80	0,72
150	stiffness	-	-	2,27	1,97	1,72	1,51	1,33	1,18	1,05	0,93	0,83	0,75	0,67	0,61
175	load capacity	-			3,39	2,80	2,35	2,00	1,73	1,50	1,32	1,17	1,04	0,94	0,85
175	stiffness	-	-	-	2,39	2,09	1,85	1,64	1,46	1,31	1,17	1,06	0,95	0,86	0,78
200	load capacity	-	-	-	3,87	3,20	2,69	2,29	1,98	1,72	1,51	1,34	1,20	1,07	0,97
200	stiffness	-		-	2,81	2,48	2,20	1,96	1,75	1,58	1,42	1,29	1,17	1,06	0,97

Wall panels made of EPS polystyrene core. *Maximum load of very bright and light colored multiband EPS wall panels with a thickness of 0.50 mm. Direction - load towards the support.*

thickness	load as a result				N	laximur	n load,	kN / m	2 in the	range	from [n	n]			
core		2,10	2,40	2,70	3,00	3,30	3,60	3,90	4,20	4,50	4,80	5,10	5,40	5,70	6,00
75	load capacity	2,89	2,49	2,18	1,75	1,27	-	-	-	-	-	-	-	÷	-
75	stiffness	1,83	1,54	1,32	1,14	0,99	-	-	-	-	-	-	-	-	-
100	load capacity	-	3,49	3,06	2,72	2,21	1,62	1,22	-	-	-	-	-	-	-
100	stiffness	-	1,71	1,47	1,28	1,13	1,01	0,90	-	-	-	-	-	-	-
125	load capacity	-	4,45	3,90	3,47	3,12	2,42	1,82	1,40	1,10	-	-	-	-	
125	stiffness	-	2,22	1,92	1,69	1,49	1,33	1,20	1,08	0,98	-	-	-	-	-
150	load capacity	-		4,75	4,22	3,80	3,39	2,53	1,94	1,51	1,21	-	-	-	-
150	stiffness	-	-	2,38	2,09	1,86	1,66	1,50	1,36	1,24	1,13	-	-	-	-
175	load capacity	-	-	-	4,99	4,49	4,07	3,35	2,56	1,99	1,58	1,28	-	-	-
1/5	tuhosť	-	-	-	2,51	2,23	2,00	1,81	1,64	1,50	1,38	1,27	-	-	-
200	load capacity	-	-	-	5,76	5,18	4,70	4,30	3,27	2,54	2,01	1,62	1,32	-	-
200	stiffness	-	-	-	2,92	2,60	2,34	2,12	1,93	1,76	1,62	1,49	1,38	-	-

thickness	load as a result				М	aximur	n load,	kN / m	2 in the	range	from [n	n]			
core		2,10	2,40	2,70	3,00	3,30	3,60	3,90	4,20	4,50	4,80	5,10	5,40	5,70	6,00
	load capacity	3,19	2,44	1,93	1,56	1,29	1,09	0,92	0,80	0,69	0,61	-	-		-
75	stiffness 3	1,37	1,16	0,99	0,86	0,74	0,63	0,53	0,44	0,37	0,32	-	-	-	-
	stiffness 2	0,93	0,80	0,69	0,60	0,53	0,47	0,41	0,36	0,32	0,29	-	-	-	-
	load capacity	-	3,00	2,37	1,92	1,58	1,33	1,13	0,98	0,85	0,75	0,66	0,59	0,53	0,48
100	stiffness 3	-	1,33	1,16	1,02	0,91	0,80	0,72	0,63	0,55	0,48	0,42	0,37	0,32	0,28
	stiffness 2	-	0,90	0,80	0,71	0,64	0,57	0,52	0,47	0,42	0,38	0,35	0,32	0,29	0,26
	load capacity	-	3,76	2,97	2,41	1,99	1,67	1,42	1,23	1,07	0,94	0,83	0,74	0,67	0,60
125	stiffness 3	-	1,66	1,46	1,30	1,16	1,04	0,94	0,85	0,77	0,70	0,62	0,55	0,49	0,44
	stiffness 2	-	1,10	0,99	0,88	0,80	0,72	0,66	0,60	0,55	0,50	0,46	0,42	0,39	0,36
	load capacity	-	-	2,58	2,90	2,39	2,01	1,71	1,48	1,29	1,16	1,00	0,89	0,80	0,72
150	stiffness 3	-	-	2,07	1,81	1,60	1,42	1,26	1,13	1,02	0,91	0,82	0,74	0,67	0,61
	stiffness 2	-	-	1,50	1,36	1,23	1,12	1,03	0,94	0,87	0,80	0,74	0,68	0,63	0,59
	load capacity	- 1	-	7 - 2	3,39	2,80	2,35	2,00	1,73	1,50	1,32	1,17	1,04	0,94	0,85
175	stiffness 3	-	-	-	2,17	1,92	1,71	1,53	1,38	1,25	1,12	1,02	0,93	0,85	0,77
	stiffness 2	-	-	-	1,56	1,41	1,30	1,19	1,10	1,02	0,94	0,88	0,81	0,75	0,70
	load capacity	-	-		3,87	3,20	2,69	2,29	1,98	1,72	1,51	1,34	1,20	1,07	0,97
200	stiffness 3	-	-	-	2,52	2,24	2,01	1,81	1,63	1,48	1,34	1,23	1,12	1,02	0,94
	stiffness 2	-	-	-	1,74	1,60	1,47	1,35	1,25	1,16	1,08	1,01	0,94	0,94	0,82

Wall panels made of EPS polystyrene core. *Maximum load of very bright and light colored 0.50mm thick single strip EPS wall panels. Direction - load away from the support.*

stiffness (3) - permissible load due to not exceeding the bending of the panel fixed by means of 3 fastening elements in width stiffness (2) - permissible load due to not exceeding the bending of the panel fixed by means of 2 fastening elements in width The load on one joint should not exceed 0.82 kN.

	•										1	-			
thickness	load as a result		_	_	М	aximur	n load,	kN / m:	2 in the	range	from [rr	ן			
core		2,10	2,40	2,70	3,00	3,30	3,60	3,90	4,20	4,50	4,80	5,10	5,40	5,70	6,00
	load capacity	2,89	2,49	2,18	1,75	1,27	2	-	2	-	2 1	-	2	-	<u>_</u>
75	stiffness 3	1,48	1,25	1,08	0,93	0,81	-	-	-	-	-	-	-	-	-
ſ	stiffness 2	1,11	0,93	0,80	0,69	0,59	-	-	-	E	-	-	÷	-	-
	load capacity	-	3,49	3,06	2,72	2,21	1,62	1,22	-	-	-	-	-	-	-
100	stiffness 3	-	1,39	1,20	1,04	0,92	0,83	0,74	-	-	-	-	-	-	-
6	stiffness 2	-	1,03	0,89	0,77	0,68	0,61	0,54	-	-	-	-	-	-	-
	load capacity	-	4,45	3,90	3,47	3,12	2,42	1,82	1,40	1,10	-	-	~	-	
125	stiffness 3	-	1,80	1,56	1,37	1,21	1,08	0,98	0,88	0,80	-	-	-	-	-
	stiffness 2	-	1,35	1,16	1,02	0,90	0,80	0,72	0,65	0,59	-	-	-	-	-
	load capacity	-	-	4,75	4,22	3,80	3,39	2,53	1,94	1,51	1,21	-	-	-	-
150	stiffness 3	-	-	1,89	1,69	1,52	1,37	1,25	1,15	1,06	0,97	-	-	-	-
	stiffness 2	-	-	1,44	1,28	1,15	1,04	0,95	0,87	0,80	0,73	-	-	-	
	load capacity	-	-	-	4,99	4,49	4,07	3,35	2,56	1,99	1,58	1,28	-	-	-
175	stiffness 3	-	-	-	1,99	1,79	1,62	1,48	1,36	1,25	1,16	1,08	-	-	-
	stiffness 2	- 1	-	-	1,52	1,36	1,23	1,13	1,03	0,95	0,88	0,82	-	-	-
	load capacity	-	-	-	5,76	5,18	4,70	4,30	3,27	2,54	2,01	1,62	1,32	-	-
200	stiffness 3	-	-	-	2,27	2,05	1,87	1,71	1,57	1,45	1,34	1,25	1,16	-	-
	stiffness 2	-	-	-	1,74	1,57	1,42	1,30	1,19	1,10	1,02	0,94	0,88	-	-

Wall panels made of EPS polystyrene core. *Maximum load of very bright and light colored multiband EPS wall panels with a thickness of 0.50 mm. Direction - load away from the support.*

• stiffness (3) - permissible load due to not exceeding the bending of the panel fixed by means of 3 fastening elements in width

• stiffness (2) - permissible load due to not exceeding the bending of the panel fixed by means of 2 fastening elements in width

• The load on one joint should not exceed 0.82 kN.

Roof panels made of EPS polystyrene core. *Maximum load of very bright and light colored 0.50mm single strip EPS roof panels.*

thickness	load as a result				М	aximur	n load,	kN / m	2 in the	range	from [n	ן			
core	بالوعيد بيان ا	2,10	2,40	2,70	3,00	3,30	3,60	3,90	4,20	4,50	4,80	5,10	5,40	5,70	<mark>6,00</mark>
75	load capacity	2,01	1,76	1,56	1,41	1,28	1,17	1,08	1,01	0,94	0,84	-	-	-	-
75	stiffness	1,91	1,52	1,23	1,00	0,82	0,68	0,57	0,47	0,39	0,33	-	-	-	-
100	load capacity	-	2,46	2,18	1,97	1,79	1,64	1,51	1,40	1,31	1,23	1,15	1,03	0,92	0,83
100	stiffness	-	1,82	1,52	1,28	1,09	0,93	0,80	0,69	0,60	0,52	0,45	0,40	0,35	0,30
125	load capacity	-	3,16	2,81	2,52	2,30	2,10	1,94	1,80	1,68	1,58	1,49	1,40	1,26	1,13
125	stiffness	-	2,41	2,04	1,74	1,50	1,30	1,14	1,00	0,88	0,77	0,68	0,61	0,54	0,48
150	load capacity	-	-	3,43	3,08	2,80	2,57	2,37	2,20	2,06	1,93	1,81	1,71	1,60	1,44
150	stiffness	-	-	2,56	2,21	1,92	1,68	1,48	1,31	1,16	1,04	0,93	0,83	0,75	0,67
175	load capacity	-	-	-	3,64	3,31	3,03	2,80	2,60	2,43	2,28	2,14	2,02	1,92	1,75
175	stiffness	-	-	-	2,68	2,34	2,07	1,83	1,63	1,46	1,31	1,18	1,06	0,96	0,87
200	load capacity	-	-	-	4,20	3,82	3,50	3,23	3,00	2,80	2,63	2,47	2,33	2,21	2,07
200	stiffness	-	-	-	3,15	2,77	2,45	2,19	1,96	1,76	1,59	1,44	1,30	1,18	0,98

the load capacity per fastener should not exceed 0.75 kN.

Roof panels made of EPS polystyrene core. *Maximum load of very bright and light colored 0.50mm multi-band EPS roof panels.*

thickness	load as a result				М	aximur	n load,	kN / mź	2 in the	range	from [n	ן]			
core		2,10	2,40	2,70	3,00	3,30	3,60	3,90	4,20	4,50	4,80	5,10	5,40	5,70	6,00
75	load capacity	1,85	1,60	1,40	1,25	1,12	1,02	0,93	0,77	0,65	0,55	0,47	0,41	-	-
75	stiffness	2,26	1,90	1,63	1,41	1,23	1,08	0,96	0,85	0,76	0,68	0,62	0,56	-	-
100	load capacity	-	2,29	2,01	1,79	1,61	1,46	1,34	1,23	1,14	0,91	0,77	0,66	0,57	0,50
100	stiffness	-	2,04	1,76	1,54	1,36	1,22	1,09	0,98	0,89	0,81	0,74	0,68	0,62	0,57
125	load capacity	-	2,97	2,61	2,32	2,09	1,90	1,74	1,60	1,48	1,34	1,13	0,96	0,83	0,73
125	stiffness	-	2,57	2,23	1,96	1,74	1,56	1,40	1,27	1,16	1,06	0,97	0,89	0,82	0,76
150	load capacity	-		3,21	2,86	2,58	2,34	2,14	1,97	1,83	1,70	1,54	1,30	1,12	0,97
150	stiffness	-	-	2,70	2,38	2,12	1,90	1,72	1,56	1,42	1,31	1,20	1,11	1,03	0,95
175	load capacity	-	÷.	-	3,40	3,06	2,78	2,55	2,35	2,17	2,02	1,89	1,68	1,44	1,25
175	stiffness	-	-	-	2,81	2,50	2,25	2,04	1,85	1,70	1,56	1,44	1,33	1,23	1,15
200	load capacity	-	-	-	3,95	3,56	3,23	2,93	2,72	2,52	2,35	2,20	2,06	1,79	1,55
200	stiffness	-	-	-	3,23	2,89	2,60	2,36	2,15	1,97	1,81	1,67	1,55	1,44	1,34

the load capacity per fastener should not exceed 0.75 kN.

Tightness of the panels

Air permeability through panel joints and resistance to heavy rain were tested to determine the impermeability of the walls and roof.

Air permeability

The air permeability was checked in accordance with the standard PN-EN 12114: 2003. The test consisted in the exact determination of the volume of air leaking through the joint from one side to the other with different pressure on both sides of the barrier (-50 Pa / +50 Pa). The test showed absolute impermeability. In practice, this means that the wall and roof panels form airtight barriers through which heat is not lost and brings high energy efficiency.

However, ventilation of rooms from sandwich panels is very important. The absolute impermeability of the walls and roofs made of sandwich panels prevents the transfer of moisture from the interior to the exterior, and therefore it is very important to install a ventilation system in order not to create a very humid environment.

Resistance to heavy rain

The resistance against heavy rain was tested according to the standard PN-EN 12865: 2004. During the test, the panels were exposed to a total water pressure of 1200Pa. They are absolutely impermeable and can be classified in the highest impermeable category, class A.

Acoustic properties

According to the PN-EN 14509: 2013 standard, the acoustic properties of sandwich panels must be tested. The test is to determine the noise level on both sides of the barrier - on the side of the noise source and on the other side. The measurement is made in 16 bands, from 100 Hz to 3150 Hz, every 1/3 octave. Based on these 16 results, a complete insulation capacity profile is created. The resulting diagram is adjusted to a standard reference curve that reflects the sensitivity of the human ear in individual bands, so that both curves are matched to each other as much as possible. The value resulting from such a setting for a frequency of 500 Hz is:

Rw - correct coefficient of acoustic resistance

This coefficient represents a measure of the total insulating capacity in the entire range of the audible spectrum. However, this coefficient does not inform about the insulating properties of the barrier in specific ranges of the acoustic spectrum. In order to determine in detail the noise insulation properties, two additional indexes are set that correct the Rw coefficient to values suitable for the area of high and low frequencies:

- C low-frequency spectral adaptive index
- Ctr high-frequency spectral adaptive index (operation)

Additional indices of insulating capacity are determined using these parameters:

$\mathbf{R}_{\mathbf{A}1} = \mathbf{R}\mathbf{w} - \mathbf{C}$

The RA1 index determines the barrier properties in the range of low tones, for example, fast road traffic, rail traffic, airplanes flying in the vicinity, sounds of daily life, human speech, etc.

RA2 = Rw - Ctr

The RA2 index determines the barrier properties in the range of high tones, such as slow traffic, disco music, etc. Another parameter determining the acoustic properties of sandwich panels are:

- reverberation acoustic absorption coefficient
- aw = absorbed / reflected energy

Barriers with a higher coefficient aw reflect less energy back inside, which means they better dampen the echo (reflection). The reverberation is amplified in rooms with barriers with a lower aw coefficient.

			Rw	С	Ctr	RA1	RA2	αw
			dB	dB	dB	dB	dB	
PIR polyisocyanurate	Wall (visible joint)	40	27	-3	-5	24	22	0,15
		60	25	-2	-5	23	20	
		80	25	-2	-5	23	20	
		100	25	-2	-5	23	20	
		120	25	-2	-5	23	20	
		140	25	-2	-5	23	20	
		160	25	-2	-5	23	20	
		180	25	-2	-5	23	20	
		200	25	-2	-5	23	20	
	Facades (hidden joint)	60	26	-1	-4	25	22	
		80	27	-4	-6	23	21	
		100	27	-4	-6	23	21	
		120	27	-4	-6	23	21	
	Freezer	120	25	-2	-5	23	20	
		140	25	-2	-5	23	20	
		160	25	-2	-5	23	20	
		180	25	-2	-5	23	20	
		200	25	-2	-5	23	20	
		220	27	-3	-5	24	22	
	Roof	60	26	-2	-5	24	21	
		80	26	-2	-5	24	21	
		100	26	-2	-5	24	21	
		120	26	-2	-5	24	21	
		140	26	-2	-5	24	21	
		160	26	-2	-5	24	21	
EPS polystyrene core	Wall (visible joint)	40	23(24)*	-2	-4	21 (22)	18 (19)	-
		50	23(24)*	-2	-4	21 (22)	18 (19)	
		60	23(24)*	-2	-4	21 (22)	18 (19)	
		75	23(24)*	-2	-4	21 (22)	18 (19)	
		80	23(24)*	-2	-4	21 (22)	18 (19)	
		100	23(24)*	-2	-4	21 (22)	18 (19)	
		120	23(24)*	-2	-4	21 (22)	18 (19)	
		125	23(24)*	-2	-4	21 (22)	18 (19)	
		140	23(24)*	-2	-4	21 (22)	18 (19)	
		150	23(24)*	-2	-4	21 (22)	18 (19)	
		160	23(24)*	-2	-4	21 (22)	18 (19)	
		175	23(24)*	-2	-4	21 (22)	18 (19)	

(Table of acoustic properties)

		1		1	r			
		180	23(24)*	-2	-4	21 (22)	18 (19)	
		200	23(24)*	-2	-4	21 (22)	18 (19)	
		250	23(24)*	-2	-4	21 (22)	18 (19)	
	Roof	60	23(24)*	-2	-4	21 (22)	18 (19)	
		75	23(24)*	-2	-4	21 (22)	18 (19)	
		80	23(24)*	-2	-4	21 (22)	18 (19)	
		100	23(24)*	-2	-4	21 (22)	18 (19)	
		120	23(24)*	-2	-4	21 (22)	18 (19)	
		125	23(24)*	-2	-4	21 (22)	18 (19)	
		140	23(24)*	-2	-4	21 (22)	18 (19)	
		150	23(24)*	-2	-4	21 (22)	18 (19)	
		160	23(24)*	-2	-4	21 (22)	18 (19)	
		175	23(24)*	-2	-4	21 (22)	18 (19)	
		200	23(24)*	-2	-4	21 (22)	18 (19)	
		250	23(24)*	-2	-4	21 (22)	18 (19)	
MWF mineral wool	Wall (visible joint)	40	31	-1	-3	30	28	0,15
		50	31	-1	-3	30	28	
		60	31	-1	-3	30	28	
		75	31	-1	-3	30	28	
		80	31	-1	-3	30	28	
		100	31	-1	-3	30	28	
		120	31	-1	-3	30	28	
		140	31	-1	-3	30	28	
		150	31	-1	-3	30	28	
		160	31	-1	-3	30	28	
		175	31	-1	-3	30	28	
		200	31	-1	-3	30	28	
		230	31	-1	-3	30	28	
		250	31	-1	-3	30	28	
	Roof	60	32	-1	-4	31	28	
		75	32	-1	-4	31	28	
		80	32	-1	-4	31	28	
		100	32	-1	-4	31	28	
		120	32	-1	-4	31	28	
		125	32	-1	-4	31	28	
		140	32	-1	-4	31	28	
		150	32	-1	-4	31	28	
		160	32	-1	-4	31	28	
		175	32	-1	-4	31	28	
		200	32	-1	-4	31	28	
		230	32	-1	-4	31	28	
		250	32	-1	-4	31	28	
			* pre ople	chova	nie O,	4 / 0,5 mm .	a pre 0,5 / 0),5 mm)

Dimensions, tolerances and consequences

Variations in dimensions and physical properties can affect the behavior of the panels during their use. Therefore, it is necessary that they are adequate so that the quality of the products delivered to the customer remains unchanged.

(Table of dimensional tolerances for sandwich panels)

Dimensional tolerances for	sandwich panels
Size	Tolerance (permissible maximum)
	D ≤ 100 mm, ± 2mm
The thickness of the sandwich panel	D > 100 mm, ± 2%
Deviation from flatness (measured at L length)	For L = 200mm, deviation from flatness
	0.6mm
	For L = 400mm, deviation from flatness
	1.0mm
	For L > 700 mm, deviation from flatness 1.0
	mm
Height of metal profile (rib)	5 < h ≤ 50mm, ± 1mm
	50 < h ≤ 100mm, ± 2,5mm
Cross-section reinforcement height	ds ≤ 1 mm, ± 30% ds
	1 mm < ds ≤ 3 mm, ± 0,3mm
	3 mm < ds ≤ 5 mm, ±10% ds
The length of the sandwich panel	L ≤ 3m, ± 5mm
The width of the sandwich panel	W, ±2mm
Deviation from squareness	s ≤ 0.6% × w (nominal cover width)
Deviation from a straight line in rows (across the length)	1 mm per one meter of length, max. 5 mm
in the longitudinal direction	
Deformation	2 mm per one meter of length, max. 20 mm
	8.5 mm per one meter of width for flat profiles
	or profile -h ≤ 10 mm
	10 mm per one meter of profile width - h> 10
	mm
Cross-sectional pitch (p)	For h ≤ 50mm, p: ± 2mm
	For h > 50mm, p: ± 3mm
Rib width (b1) and cavity wavelength (b2)	For b1, ±1mm
	For b2, ±2 mm

All certificates

- **Hygienic certificates** for sandwich panels made of polyisokynurate/polyurethane PIR/PUR, mineral wool (MWF) and polystyrene core (EPS).
- Hygienic certificates for PIR insulation panels (boards).
- **Declarations of performance** and parameters for polyisokynurate/polyurethane PIR/PUR, mineral wool (MWF) and polystyrene core (EPS) sandwich panels.
- Statements on performance properties and parameters for PIR insulation panels.
- Environmental statement on products.

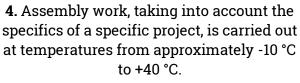
ernalico	nduithelly (14) ng un Decision	1 - 0003 W		Lihezars. These d beringslehovi		
dagaen di	14 00 0 1 1 1 1		п Қарам	d beringbehavi	net.	
dagaen di	14 00 0 1 1 1 1		in Carbon	a mangaciwa	aut.	
120						
		1. 100	190	200	220	
	140		100 mm	1 200	1 200	
THE PLACE PLACE						
2000 - 90000***						
122	110	114	14.8	1 154	10.2	
110	310	144	15.4	1 162	17.0	
				10.		
0.9	2.5	1 614	6.12	011	6,12	
	107	-	1	and the second second		
	6176	1215	2. 19	E 175	8.79	
81.30	11.80	1230	8.40	Ling-Timer***	(116-1947	
				17		
	- 10		42,40			
			MRQ	r		
	100	1	1111			
P						
24						
11						
0.15						
n+13M2C+02022						
n+10%1C+0006						
	110 0.10 0.15	140 140 010 0.56 015 015	122 100 108 130 102 102 104 600 145 055 105 105 105 105 105 105 105 10	100 100 104 Nd 101 104 0.04 0.04 0.04 001 1 500 0.02 1.02 0.02 010 1 500 0.02 0.02 0.02 0.02 0100 0.09 0.09 0.00 0.02 </th <th>00 00<</th>	00 00<	

			nelsł	nop	
		the long which enjoy is the long which enjoy is approximately provide the data part of a provident to active place the long with active place to active active place to active active place to active the second second english and the long english active to active active provides, ac-	en e		
Subable for hubbing activitial and internal walls of on-bins, form facilities. Vertical or forecastal insta PRVPRIM com - 1077 poly/socyam-rate fores, them	bates.				
Shoul should being with a right robins protection the	Sound an eventual se				
Phirms	1 mp -		100	120	
making watth (real)	-	108.0	10001		
tate with (res)	redular witth +15 mm				
level they	200-1400**				
mattic/data/	100 1 000 100 100 100				
watto?/orbary1	302	16.9	115	12.1	
Installing percent		and a	1. 1.1.1.1	1 104	
U PR/RE-UKTYNI	042	0.29	0.22	6.95	
Barring Self-Anno					
RD-fre-montance	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
RIS-On constance	1.				
MUTER Instances for	8-12-80				
five prepagetion	110				
Acoustic properties		1000			
mountie resistance conflicters	1 N.	1000			
8,100		1 1			
8, 108					
8, (68)		2			
accustic absorption coefficient m.	0.13				
Laskprocfress	10				
At permutative pressure		4+17570	C=0005		
An parmeability suction	0+07776(+00775				
Blowing this sectorer	A.	class - absolute hus	prodhese at 500 P	24	
	order primer subscripts" samples		- TRADING. 4 026 01 026 01	rading	

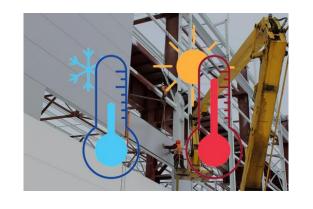
How they are assembled sandwich panels

Assembly tips and technical drawings of assembly details

We have summarized in points the most important assembly tips during construction. We drew on twenty European technical catalogs, which are enriched by our own experience. Technical drawings can be found in the next section.

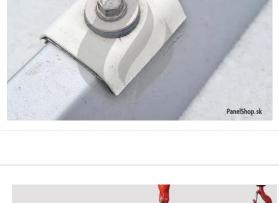

1. We recommend entrusting the processing of project documentation and assembly to an experienced construction company with the necessary equipment.

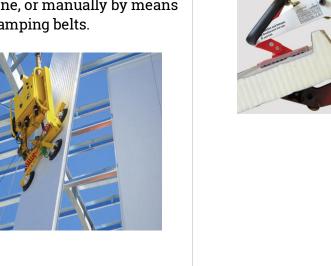
2. Everything to check the whole construction, safety of workers, project documentation, structural plans, verticality, horizontality, preparation of tools and techniques and sandwich panels.



3. It is best to perform the installation when it is not raining, snowing or blowing, when there is no dense fog and in the evening only with good lighting.

5. For wall panels, at least a base bar, sealing tape and sheeting elements are installed at the plinth (see technical drawings).

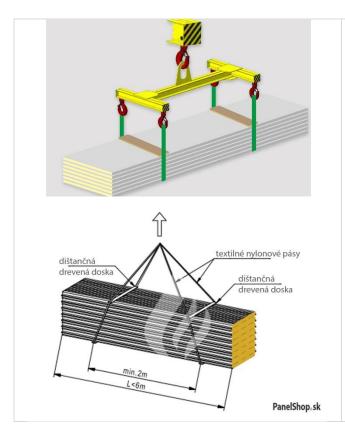

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, & paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

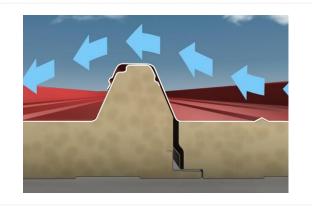

6. TEX galvanized self-tapping screws with EPDM backing are used to fasten wall and roof panels to steel, wood or concrete. Stainless steel screws are used in a more aggressive environment.

When fixing the TEX self-tapping screws, make sure that the rubber EPDM pad only slightly expands.

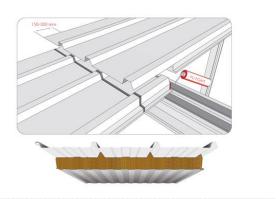
7. Calots are an important part of highquality fixing of roof panels.

8. The panels can be moved either by means of a vacuum lifter (recommended), by means of a mechanical gripping device (lifting clamps) and a crane, or manually by means of clamping belts.



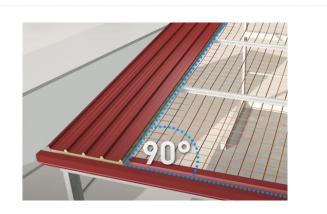


Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00



9. The installation direction should be opposite to the prevailing wind direction for both roof and wall panels.

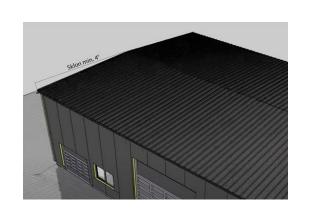
10. In the case of roof panels, a situation may arise when there are more rows and the panels are connected by a longitudinal overlap, which is created by undercutting from 150 to 300 mm, depending on the roof slope. (you can request undercutting when ordering)

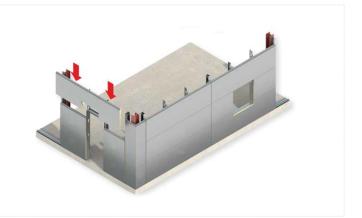

11. Before fixing, put down the protective transparent film. The foil must be removed within 3 months, because the paint and the top of the sheet will be damaged.

12. We recommend sticking sealing tapes over the entire structure and at the sheeting elements.

13. The horizontal and vertical attachment of the wall panels must be perpendicular to the structure and aligned according to the spirit level. We align the roof panels at 90° also to the structure.

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

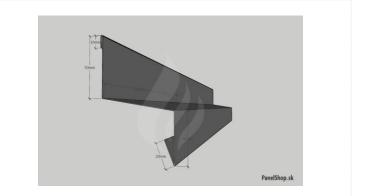

14. In the case of roof panels, it is recommended to use a crane to move the entire package to the roof of the building with subsequent fixing. Of course, this also applies to wall-mounted ones, so that the package is as close as possible to the installation.


15. The panels fit together easily because they use a tongue-and-groove system on both types of panels.

16. The minimum slope for roof panels is 4%, and when they are connected in several rows, it is 7%.

17. In general, it is easier to cut holes in the panels before installation, but they can also be cut afterwards.

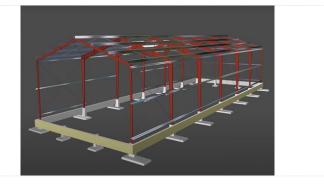
18. Circular saws or straight line saws are used to cut the panels and not carbon grinders (flexes), which will damage the surface of the panel. We recommend placing the panels on stands (goats) before cutting.


19. We recommend checking the facade, roof panels, cladding elements and gutter system once a year.

After the inspection, any damage must be removed and all panels washed with a lowpressure device with a non-aggressive cleaning agent and a sponge.

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

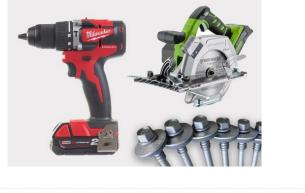
19. According to the plans and procedure, we install important functional, protective and aesthetic cladding elements together with sealing tapes. (where and what cladding elements to use can be found in the next section.)


20. The sandwich panel system can be mounted on all types of structures such as wood, concrete or steel. A steel frame is most often used.

21. Horizontal laying of panels is recommended for several reasons, namely: better mechanical and load conditions, cheaper construction, lighter construction, no intermediate beams, simple installation, easier transport and handling due to the shorter length of the panels.

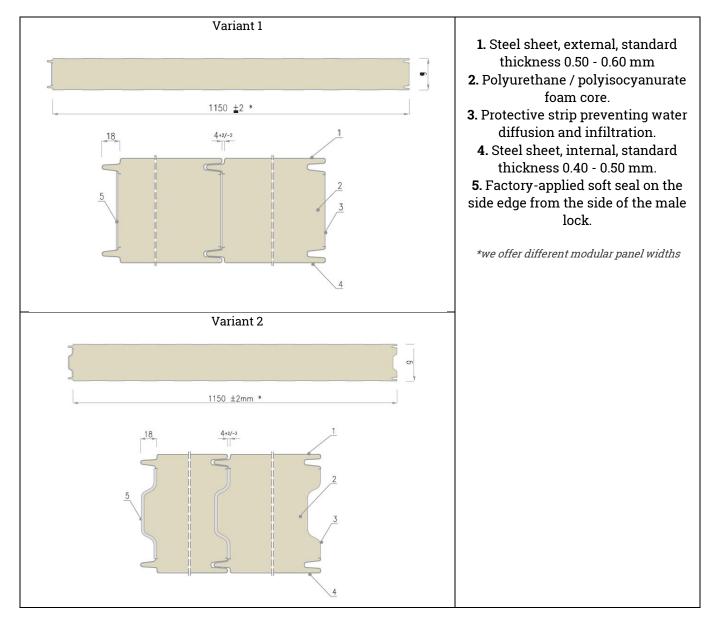
22. Structural profiles, such as thin-walled cages, are intended for use primarily as cages for ceilings, roofs and walls of steel halls. Thin-walled profiles are available as standardized Z and C profiles or as special profiles.

They enable precise and quick assembly. These profiles are used as prisons and wings for all types of halls.


23. During construction, you will need a cordless screwdriver, a circular saw, a straight saw, a spirit level, a protractor, pur foam, sealing compound, a leveling device, sealing tapes, a tape measure, clamping bands, calottes, nailing tools, screws, a marker, a rubber hammer, goats (stands), and other tools according to the specific needs of the building.

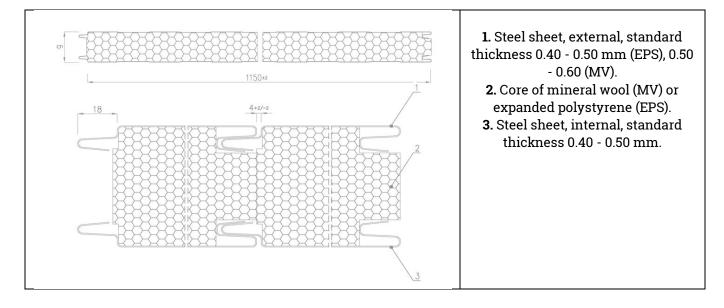
24. Surveys show that falls from a height are the most common cause of injuries in industry and construction, so pay attention to safety and professional competence when completing the work.

25. Of course, they are also part of the construction sheeting elements, gutter system, snow barriers, ventilation elements, roof ladders, lightning rods, filter systems, engineering networks, skylights, gates, doors, windows, shelters, interior installations, exterior landscaping and more according to the requirements of the work.

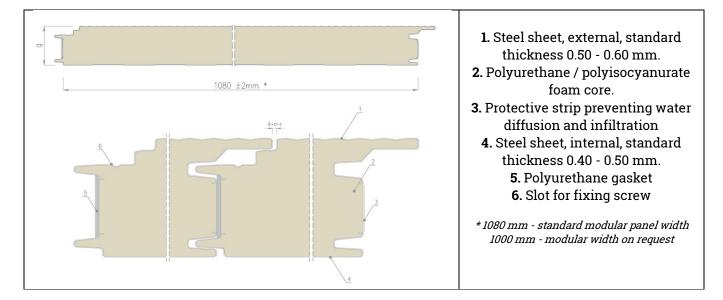

Technical drawings and assembly visualizations

drawings of the main solutions to situations

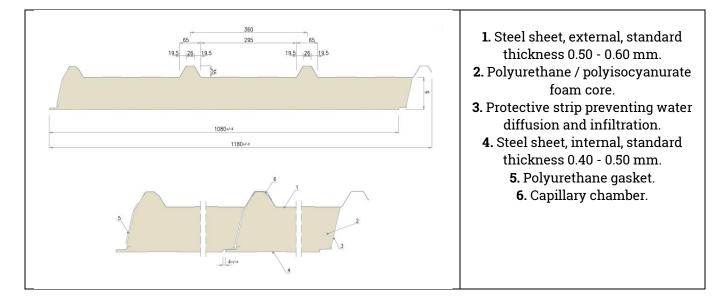
All technical drawings and situations can be found in a separate catalog here (under preparation) »


1. Wall sandwich panel with visible joint

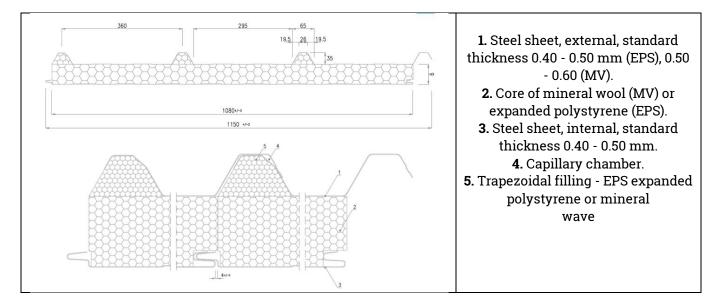
Polyurethane / polyisocyanurate foam core


2. Wall sandwich panel with visible joint

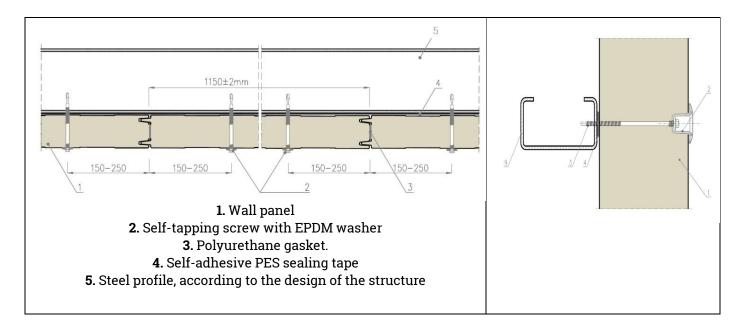
Mineral wool core (MV) or expanded polystyrene (EPS)


3. Wall sandwich panel with hidden joint

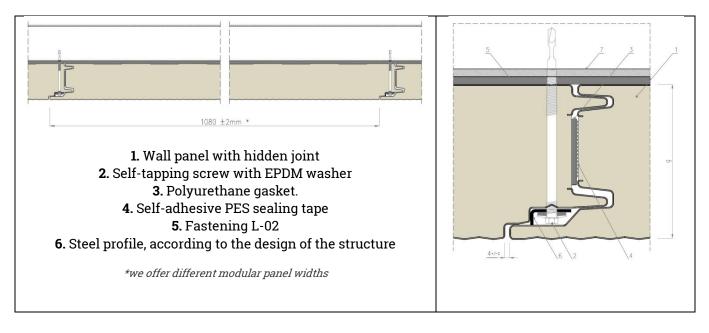
Polyurethane/polyisocyanurate foam core


4. Roof sandwich panel

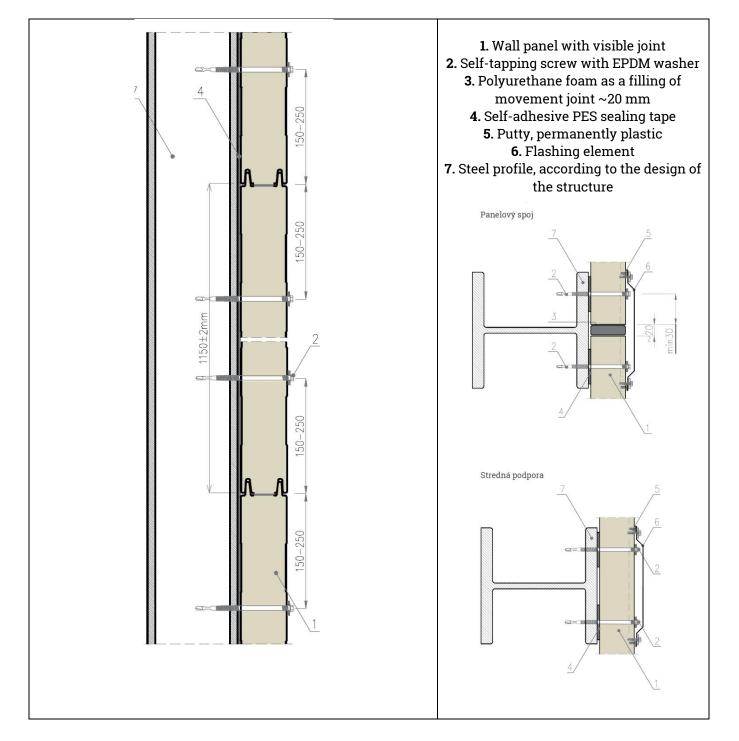
Polyisocyanurate foam core


5. Roof sandwich panel

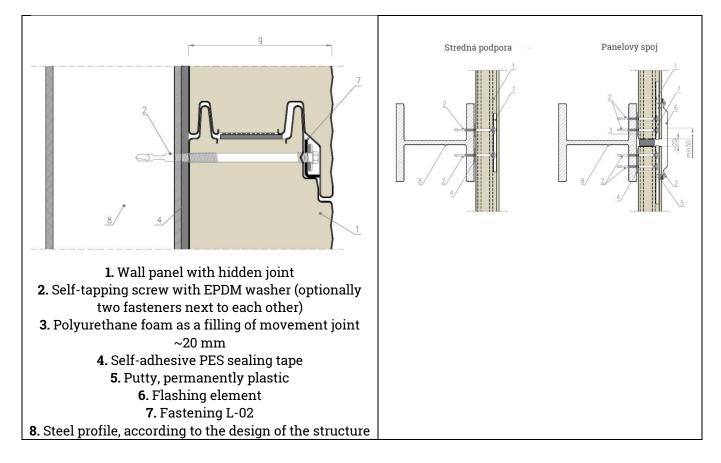
Mineral wool core (MV) or expanded polystyrene (EPS)


6. Wall panel with visible joint - fastening to the structure

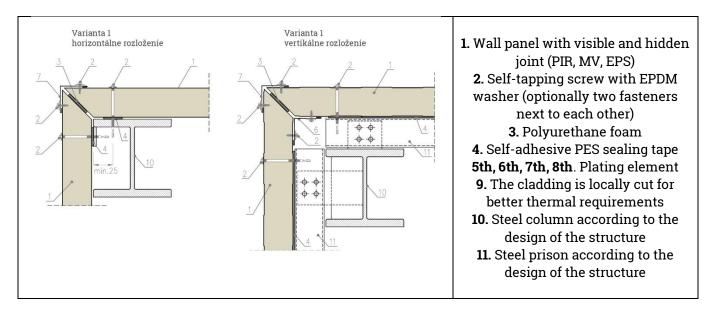
Vertical layout

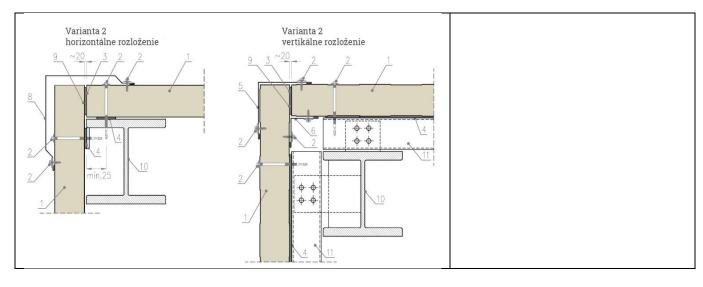

7. Wall panel with hidden joint - fastening to the structure

Vertical layout

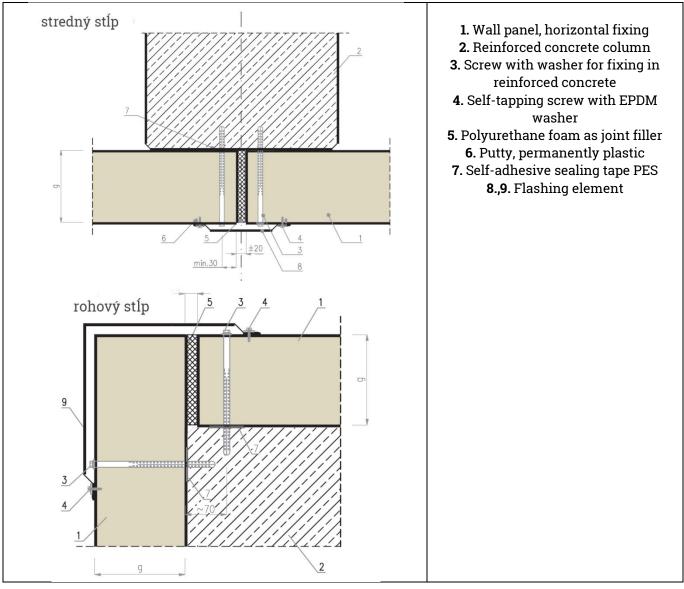

8. Wall panel with visible joint - fastening to the structure

Horizontal layout (for PUR, PIR, MV, EPS)

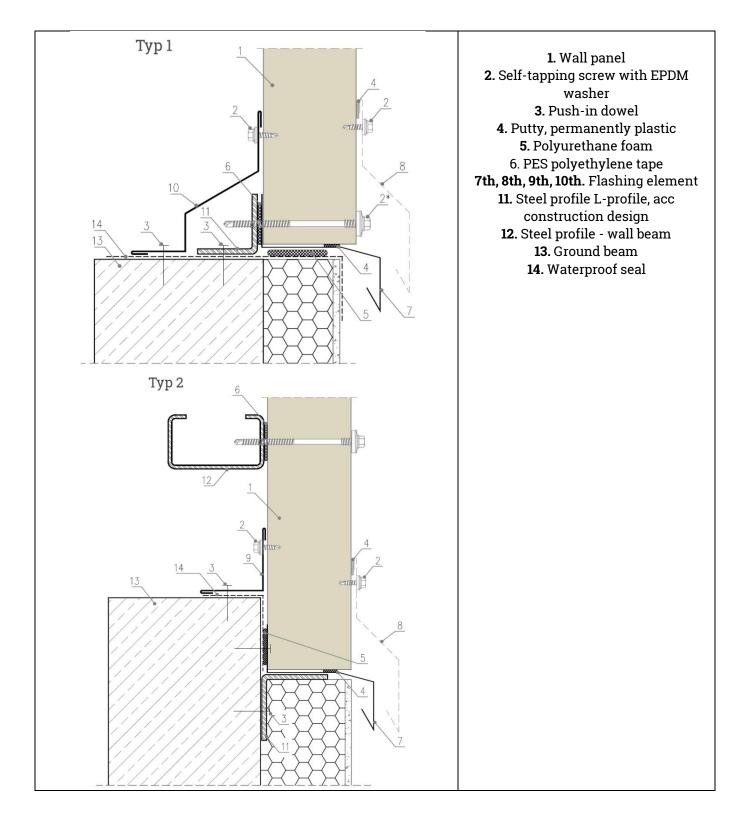

9. Wall panel with hidden joint - fastening to the structure

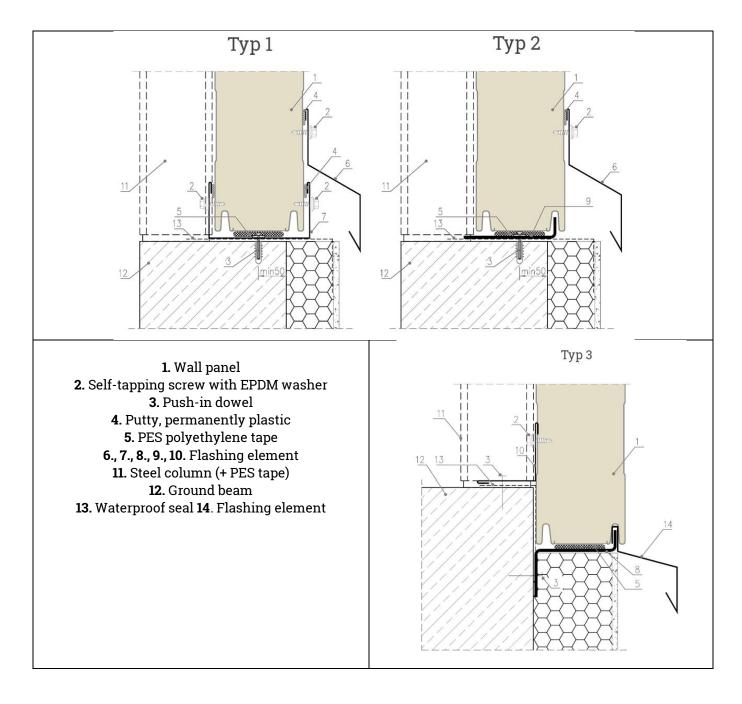

Horizontal layout

10. Corner joint - fastening to the structure

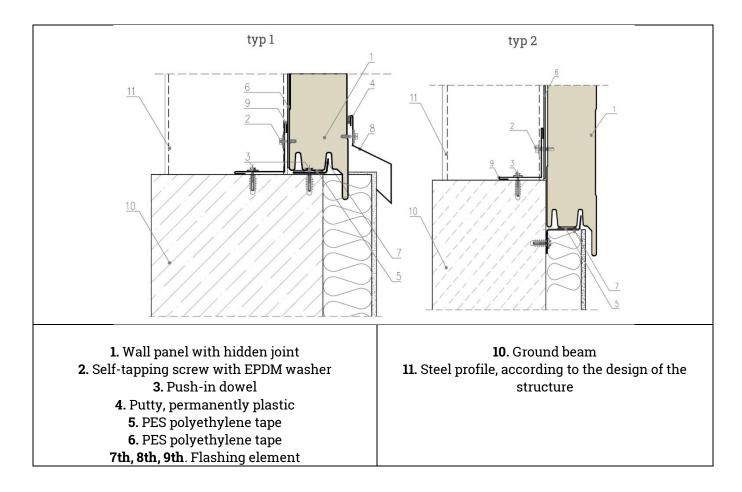

Wall with visible and hidden connection

11. Fastening the panels to the reinforced concrete column

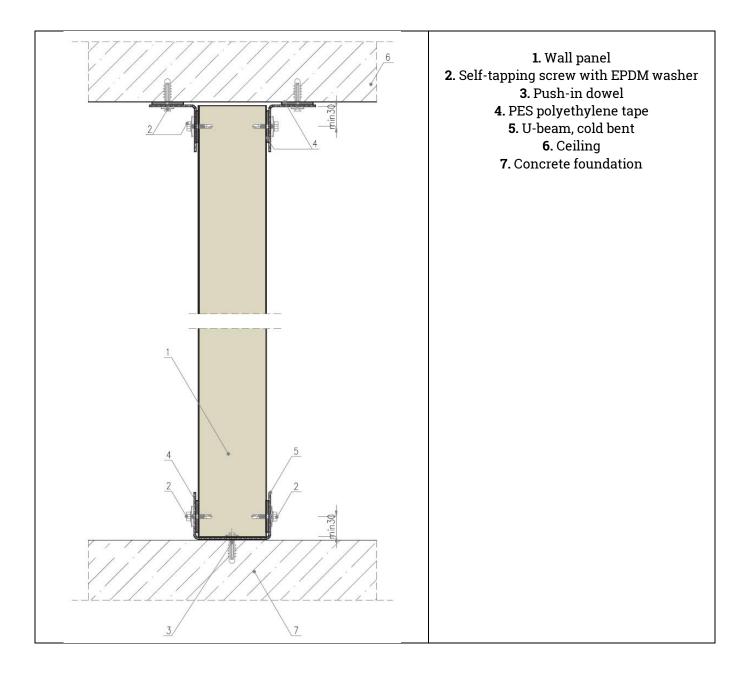

Wall panel, horizontal fixing


12. Fastening to the lower beam

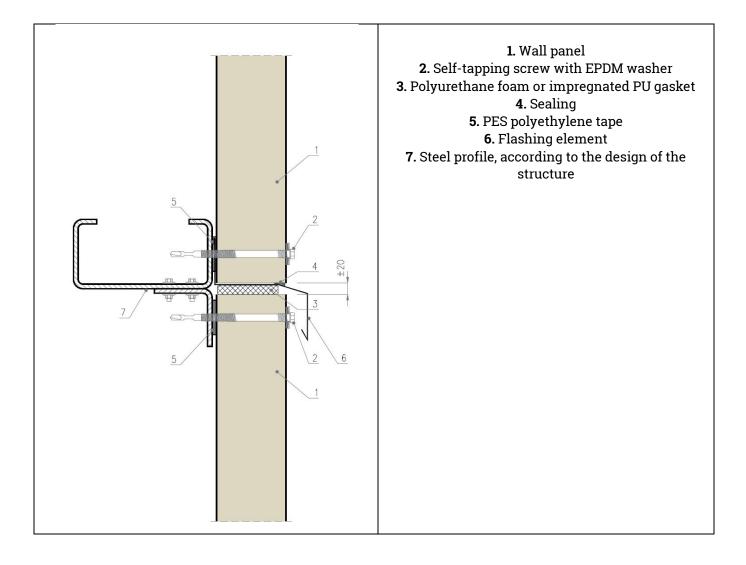
Vertical fastening


13. Fastening to the lower beam

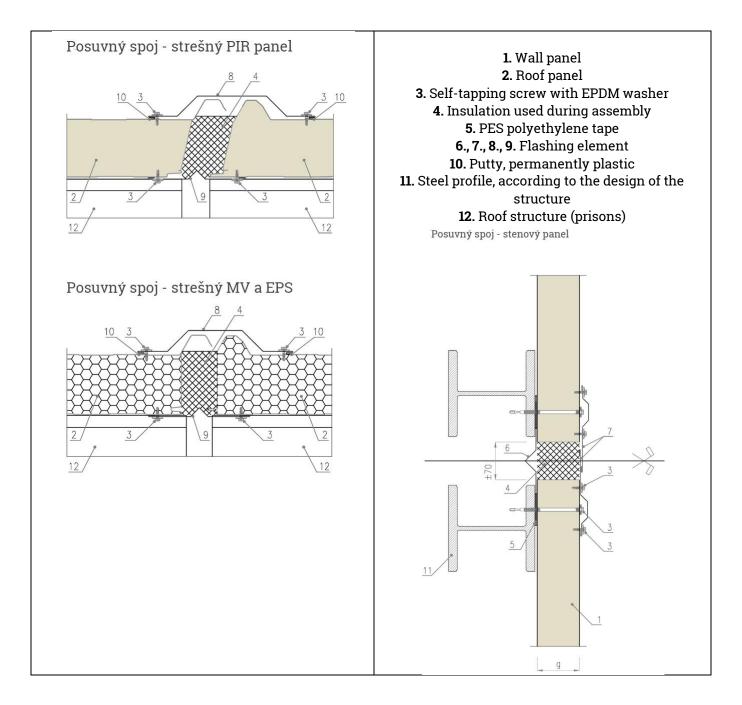
Horizontal fixing


14. Fastening to the lower beam

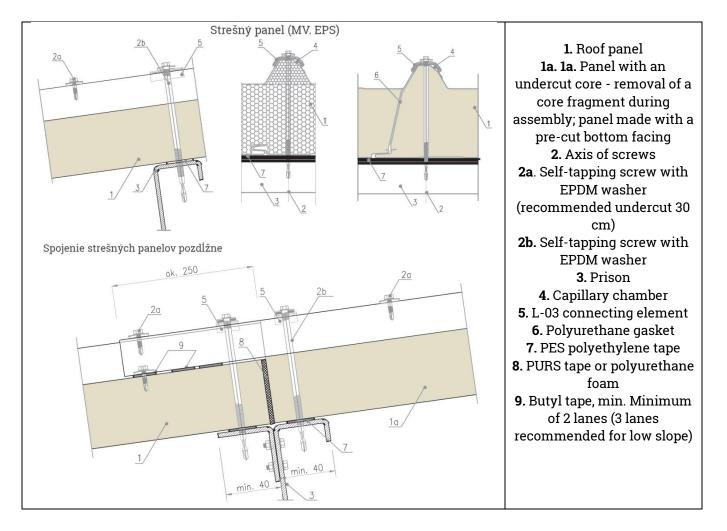
Wall panel with hidden joint, Horizontal fixing


15. Dividing wall

Wall panel with visible and hidden joint


16. Connecting panels along the length

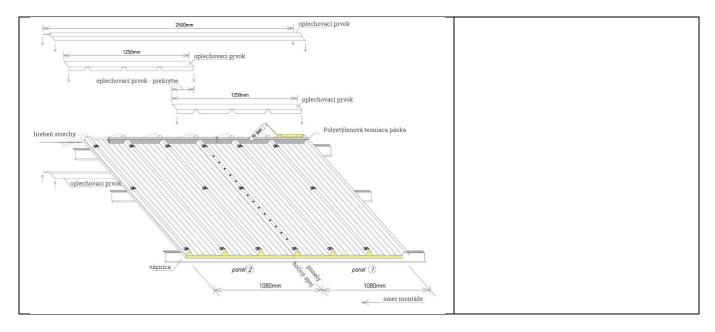
Vertical joining, tall objects

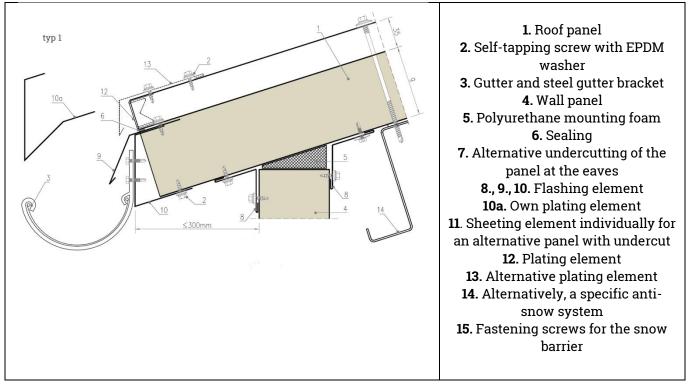

17. Sliding joint

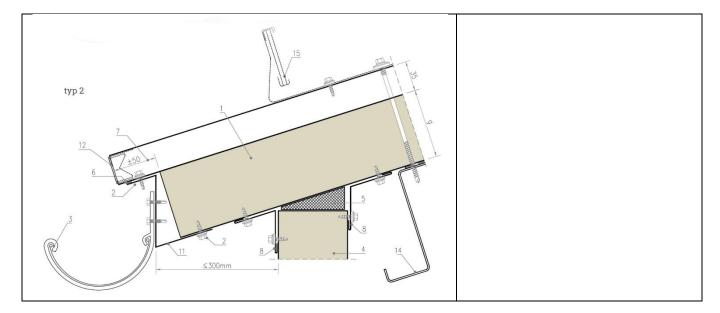
Wall and roof panels

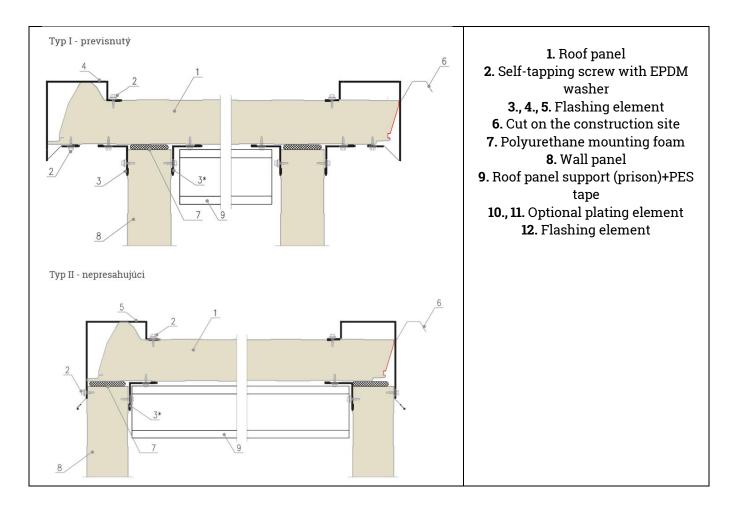


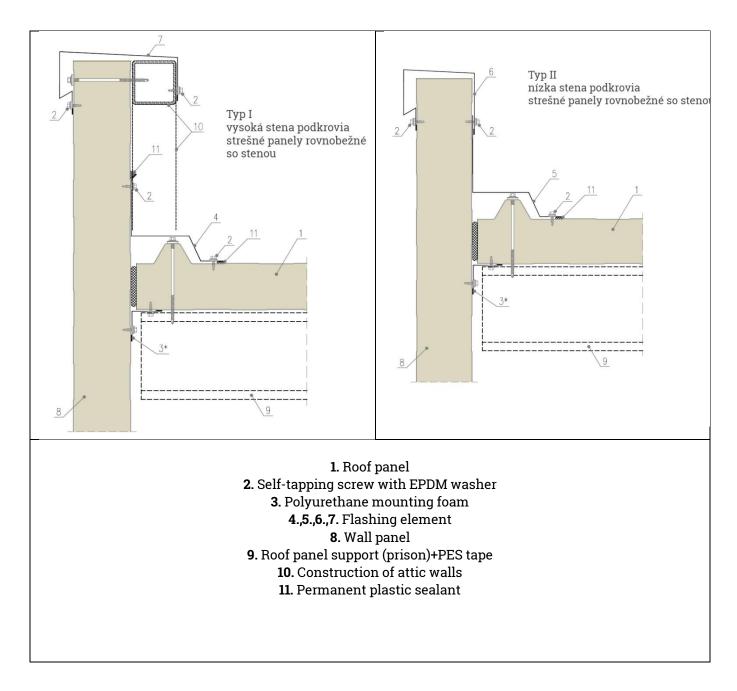
18. Fastening to the structure with a side joint of the panel


Roof panel

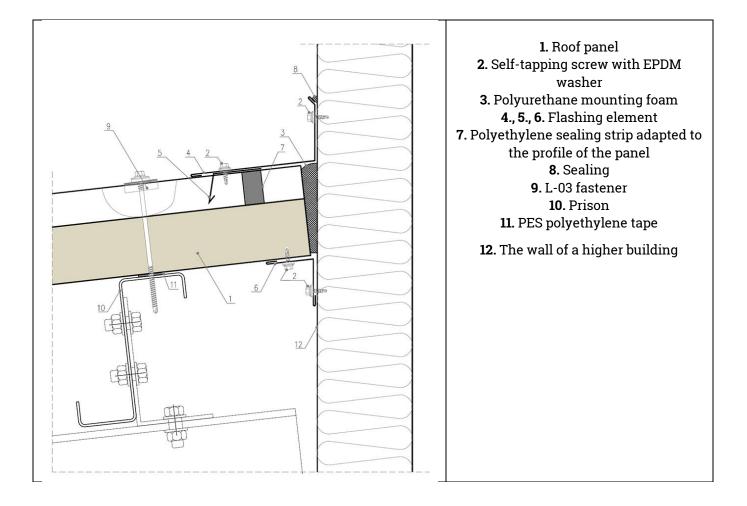

19. The ridge of the roof


Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00


20. Gutters with optional attachment of snow guards

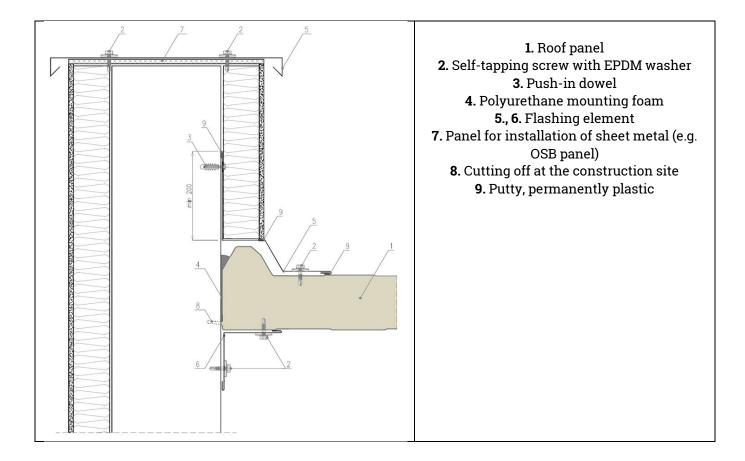

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

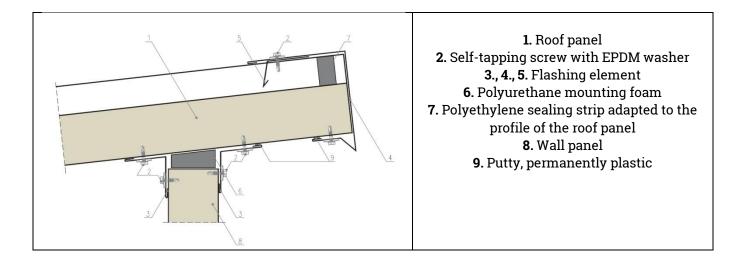
21. Connecting element of the upper wall



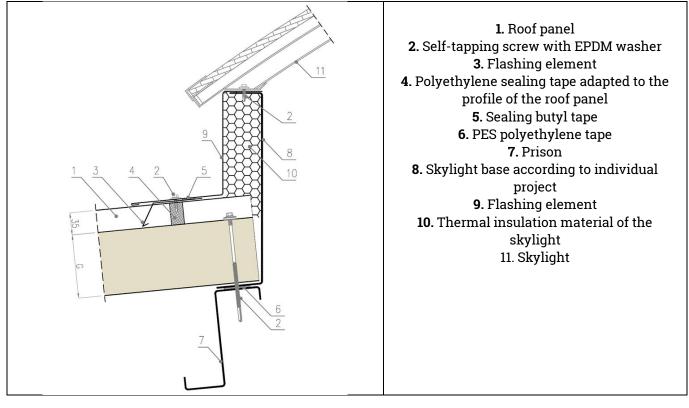
22. Joint of the upper wall panel projecting above the roof

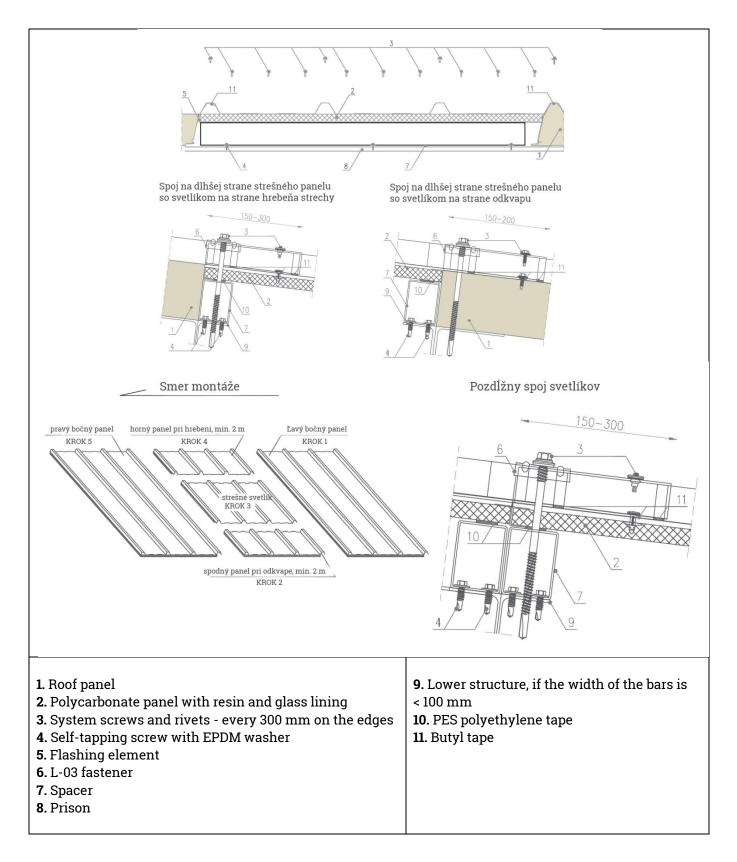
Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00


23. The edge of the roof next to the wall of a higher building

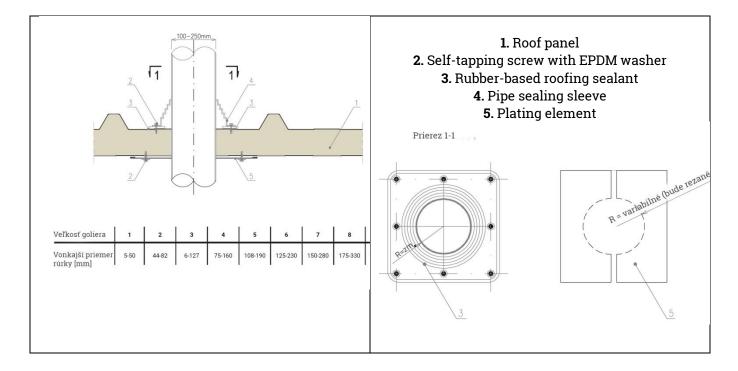


24. A joint of a brick wall projecting above the roof

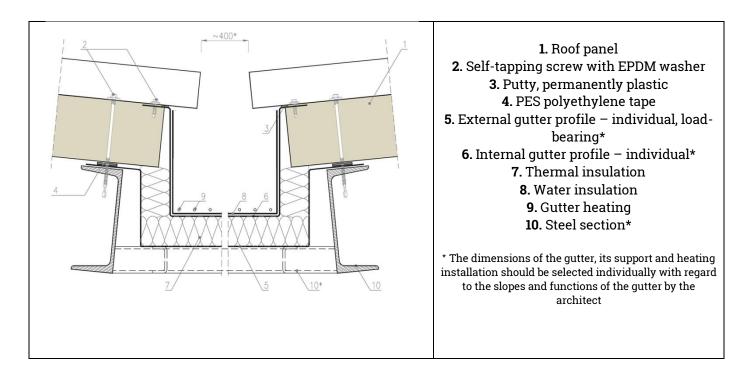

Roof panel


25. The joint of the higher edge of the single-pitched roof

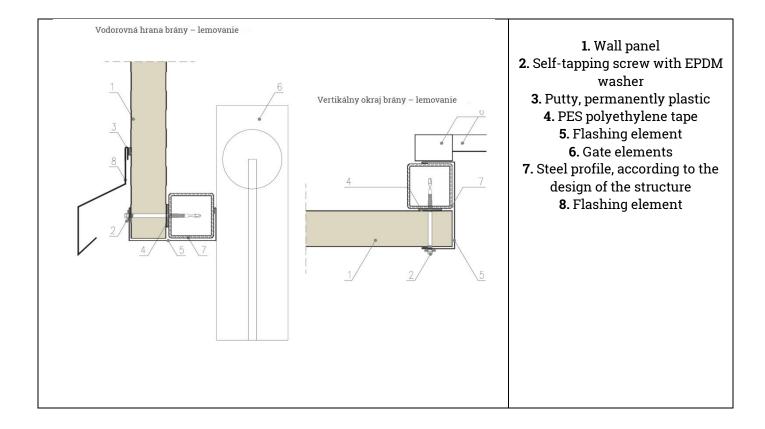
26. Roof ridge skylight



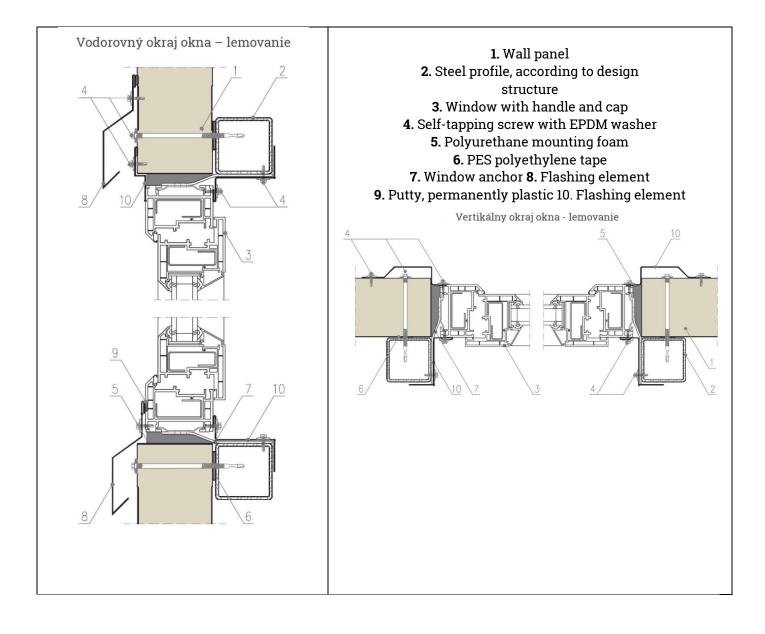
27. Skylight strip



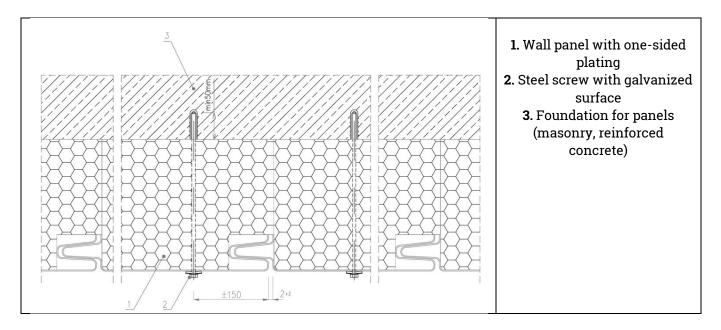
28. Roof penetration


Roof panel

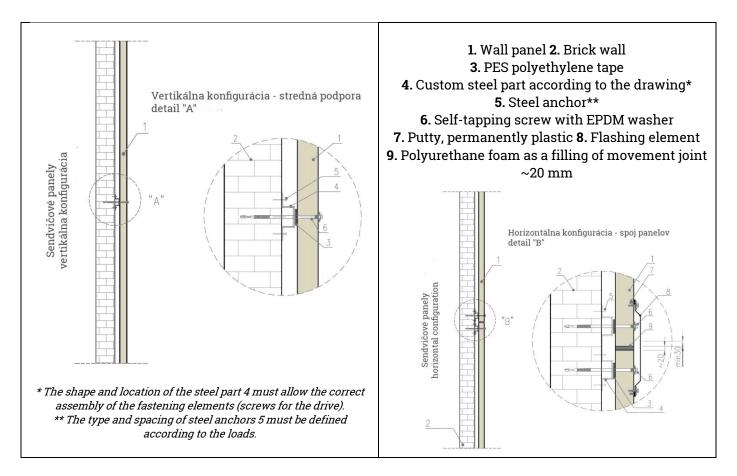
29. Internal gutter in the joint of the roof panels


30. Connecting the panels to the edge of the gate - edging

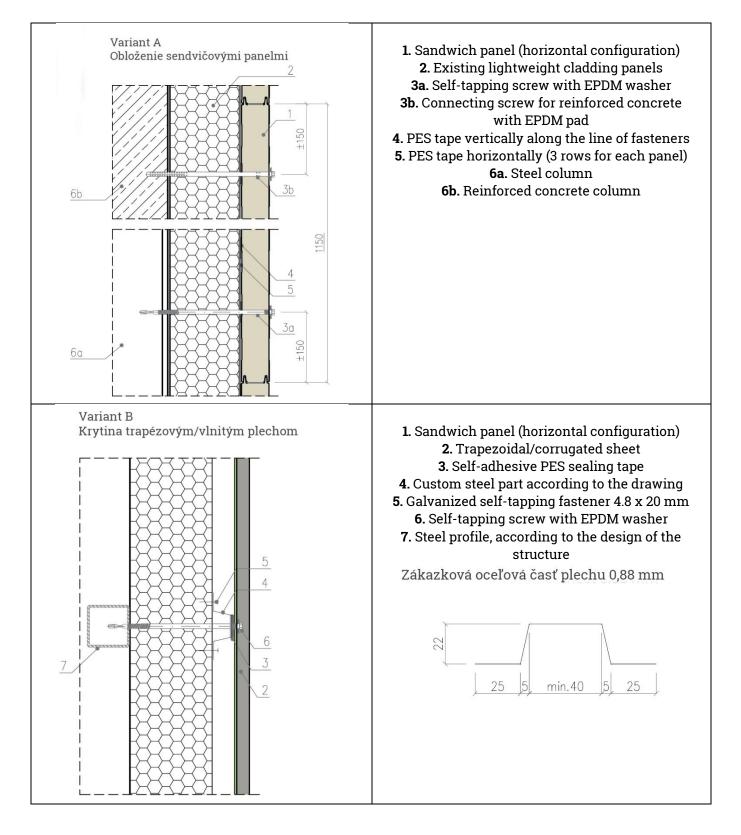
Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00


31. Connecting the panels to the edge of the window

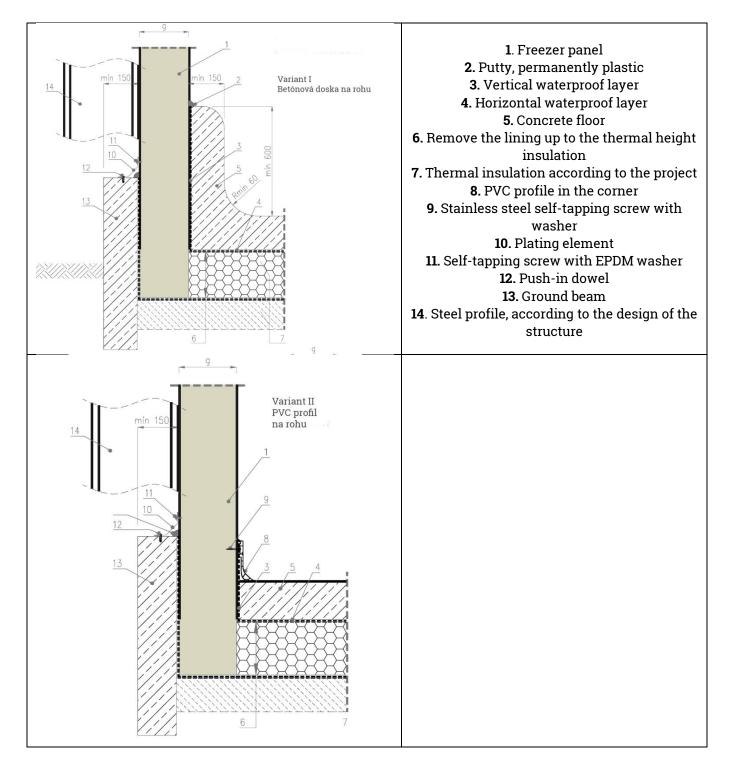
Wall panel


32. Use of a sandwich panel with one-sided steel sheeting

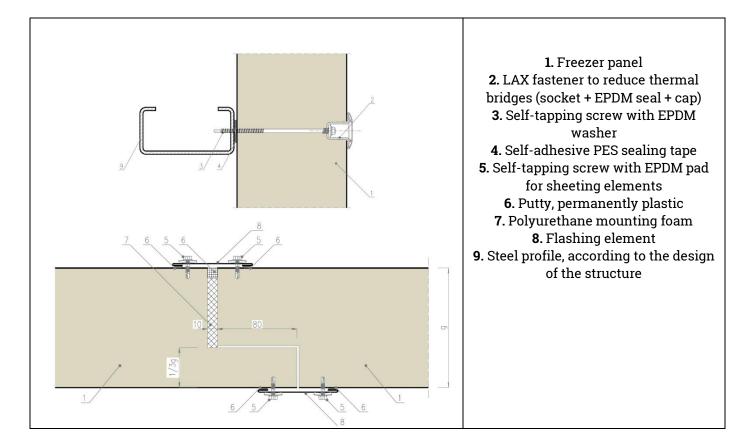
Wall panel


33. Wall mounting

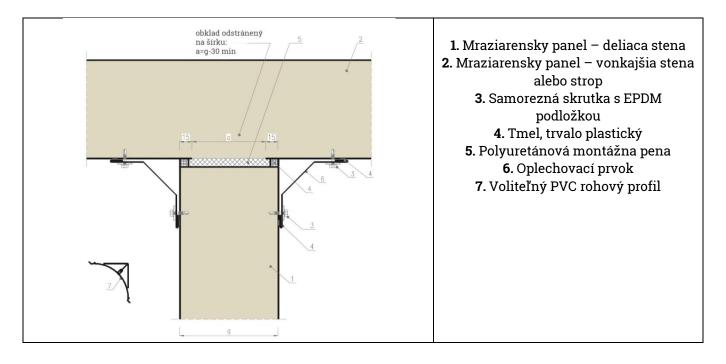
Wall panel


34. Installation of an additional view on existing panels

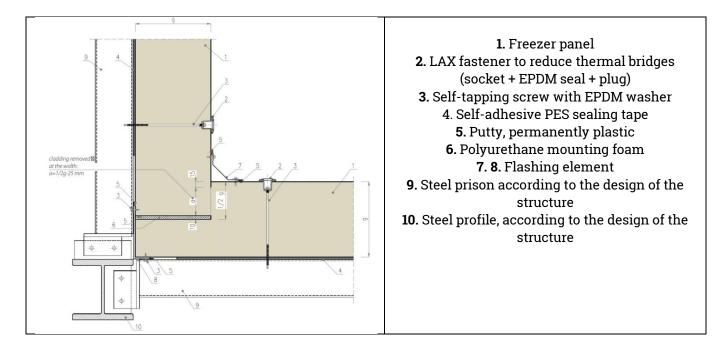
Wall panel


35. Joint of freezer panels with concrete and PVC corner

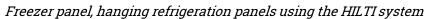
Freezer panel

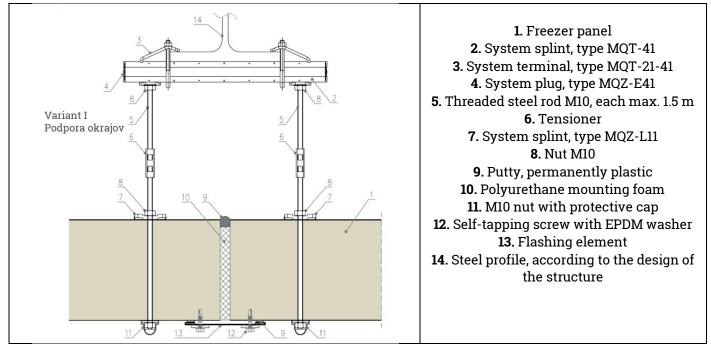

36. Fastening freezer panels using lax screws

Freezer panel, connecting freezer panels along their length

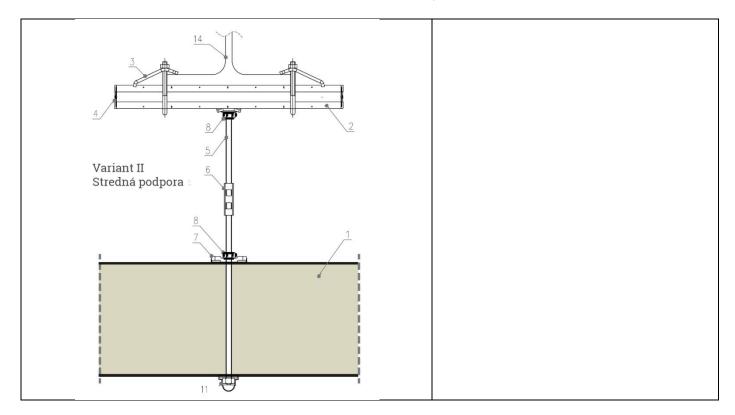

37. Connection of an external wall or ceiling with a dividing wall

Freezer panel

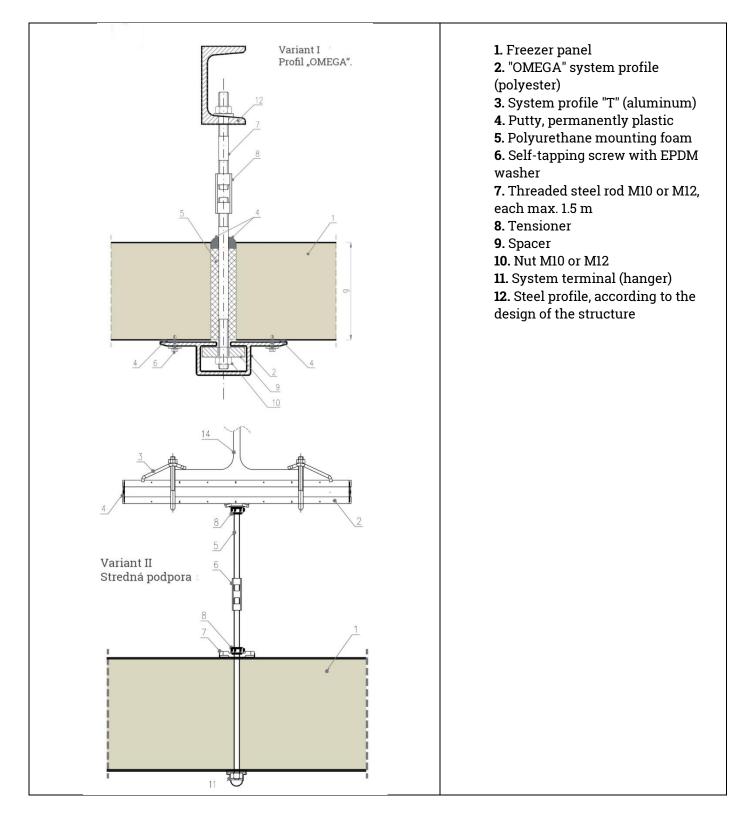



38. Fixing freezer panels in the corner

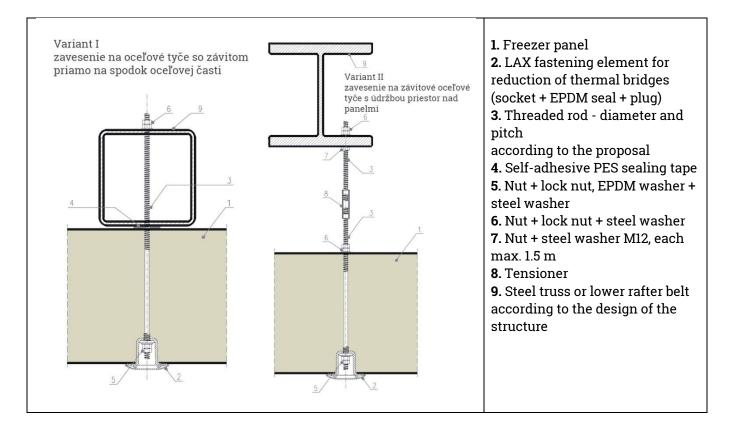
Freezer panel



39. Hilti system



Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00


40. Omega profile

Freezer panel, hanging panels using "T" and "OMEGA" profiles.

41. Hanging panels using lax system fasteners

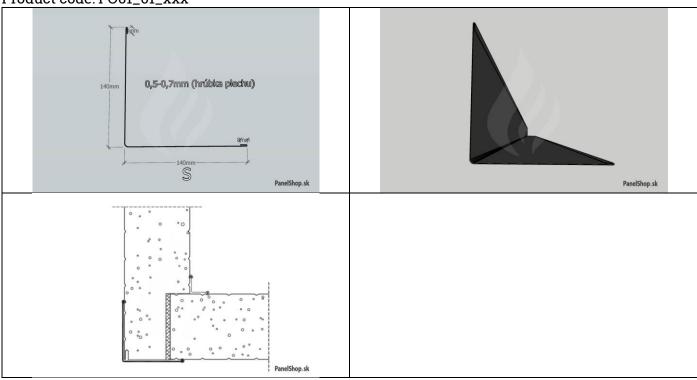
Freezer panel

All technical drawings and situations can be found in a separate catalog here (under preparation) »

Cladding elements and their location?

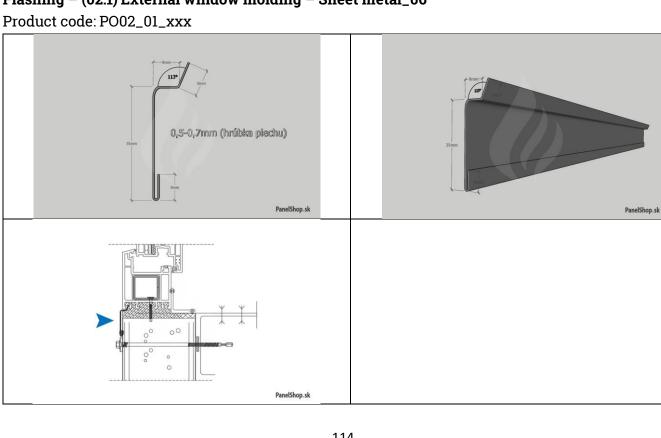
Visualizations of the cladding element + placement examples

For aesthetics, protection and proper drainage of rainwater, cladding elements (stripes) are used, which are made of colored galvanized sheet metal with a thickness of 0.5 to 1.25 mm. The inner side has a surface treatment of polyester and the outer side of 25 micrometer (µm) polyester as a standard layer thickness (it can also be a thicker layer for more aggressive environments). The standard length of the sheet is 6 m. Colors are available in RAL shades as for sandwich panels.


We offer two types of plating elements: 41 pcs and 33 pcs. The possibility of entering your own parameters. We have prepared visualizations of the cladding element and placement examples. Larger images can be found at www.paneleshop.ru in the accessories section.

Types of plating are divided into roof and wall:

Roof elements	Wall elements
 comb elements expansion elements flashing of skylights connecting the roof panels to the wall connecting the roof panels to the panel wall flashing of shields tinning of attics flashing of gutters 	 flashing of corners and internal corners cover strips - panel joints connection of panels to neighboring buildings flashing of windowsills flashing holes flashing of windows, doors and gates flashing metal blinds

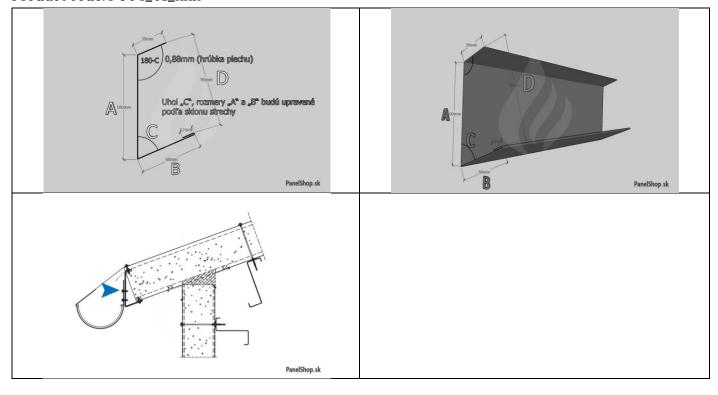

Plating elements (First group, 41 pcs.)

Flashing - (01.1) External straight corner Product code: PO01_01_xxx

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

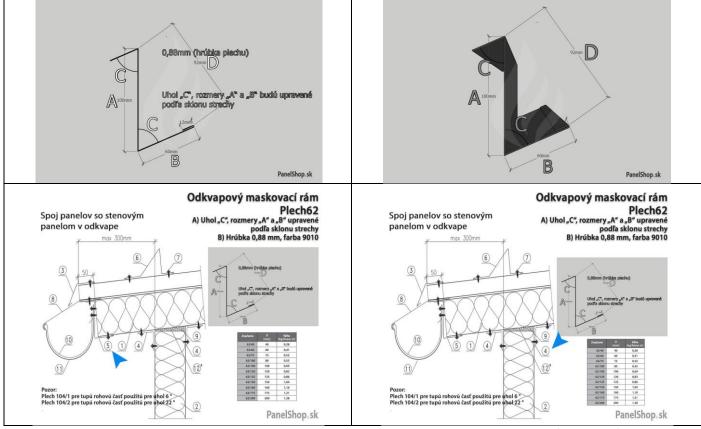
Flashing - (02.1) External window molding - Sheet metal_06

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>


Flashing – (02.1) External window molding – Sheet metal_06

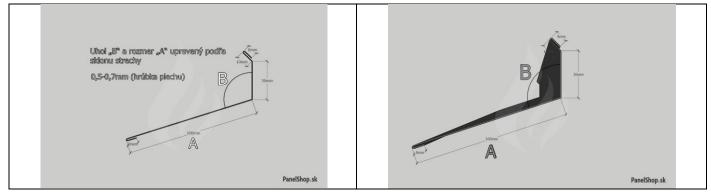
Product code: PO02_01_xxx

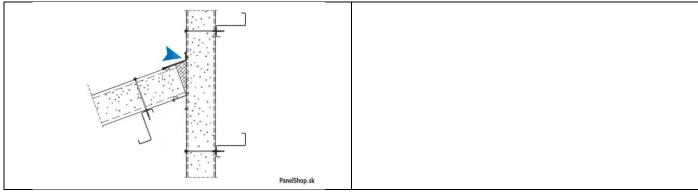
You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/


Flashing – (04.1) Gutter masking frame option 1 – Sheet_57 Product code: PO04_01_xxx

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

Flashing – (05.1) Eaves masking frame option 2 – Sheet metal_62

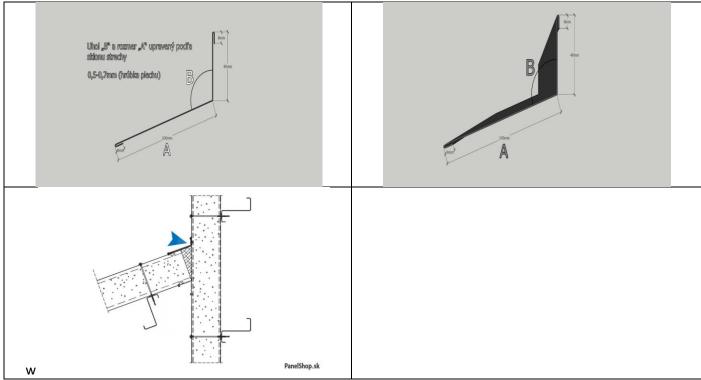

Product code: PO05_01_xxx



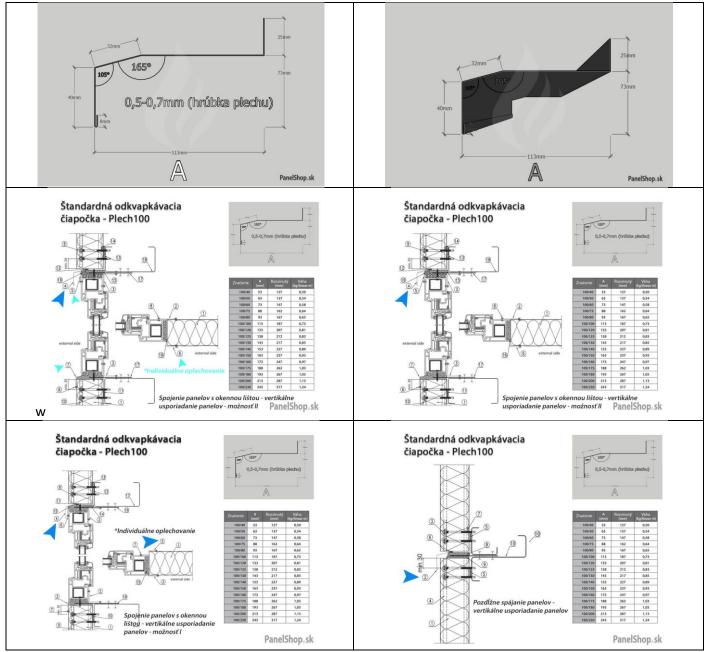
You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

Flashing – (06.1) Wall Roof masking frame bending back – Sheet metal_74

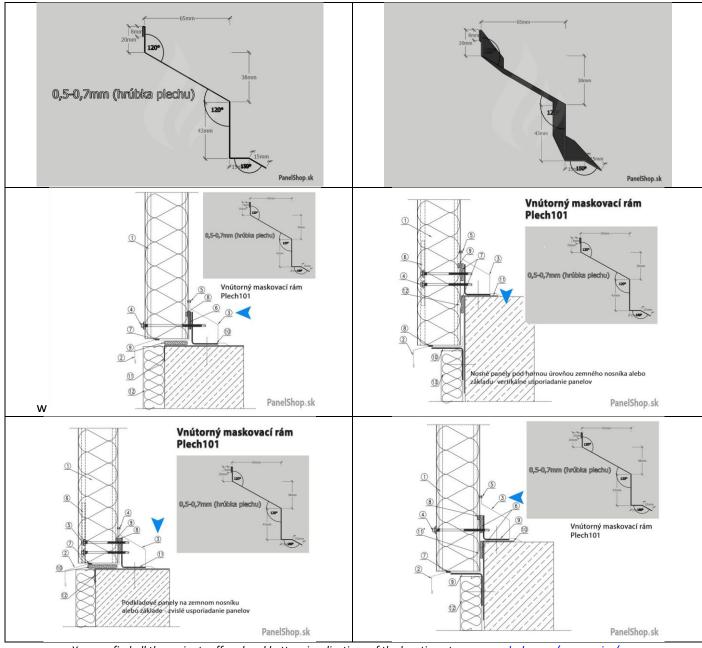
Product code: PO06_01_xxx



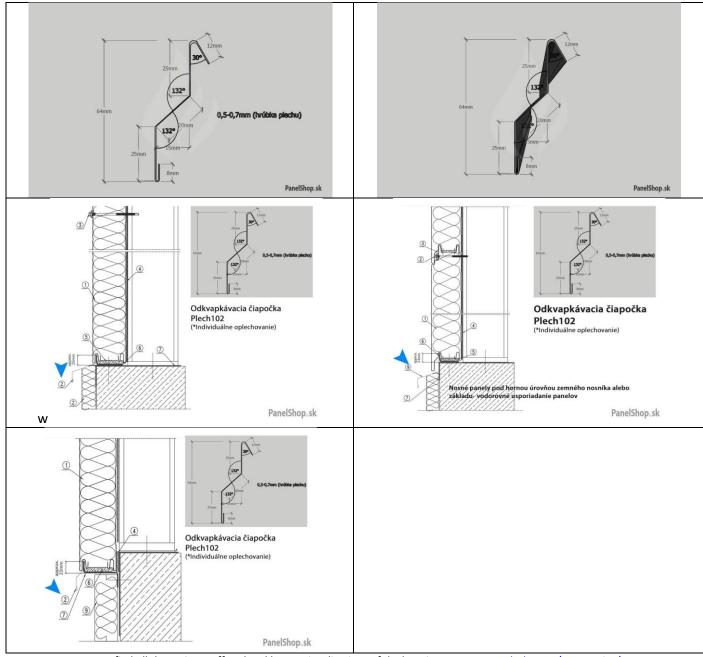
You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/


Flashing - (07.1) Wall-roof masking frame straight - Sheet_76

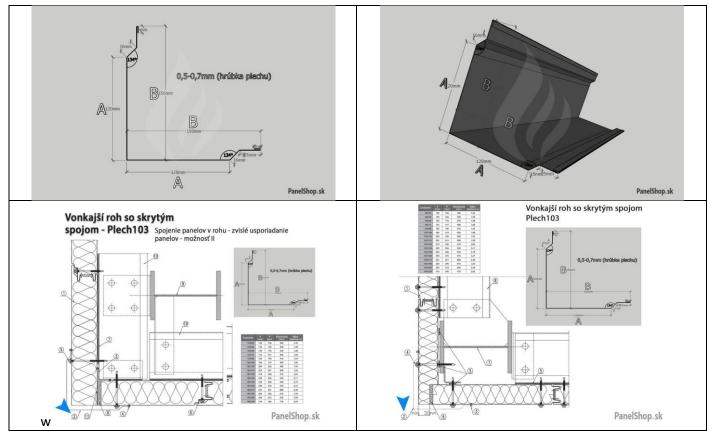
Product code: PO07_01_xxx


You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

Flashing - (08.1) Standard drip cap - Sheet_100 Product code: PO08_01_xxx

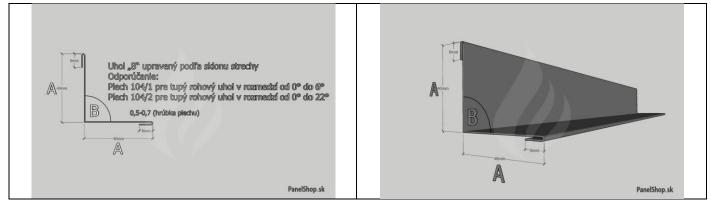

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

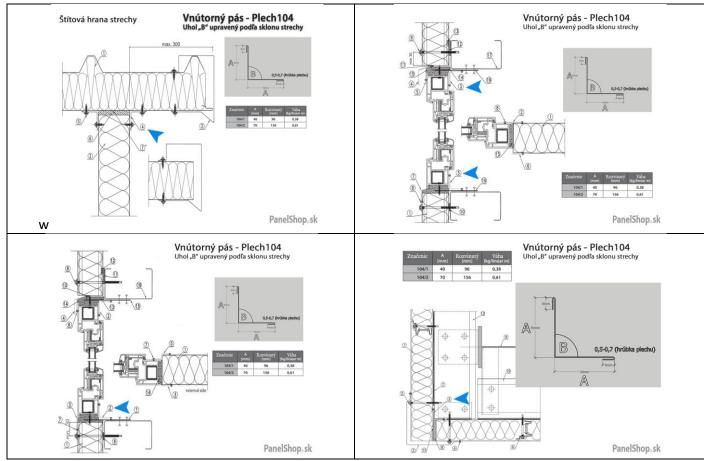
Flashing – (09.1) Internal masking frame – Sheet metal_101 Product code: PO09_01_xxx


You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

Flashing - (10.1) Drip cap - Sheet_102 Product code: PO10_01_xxx

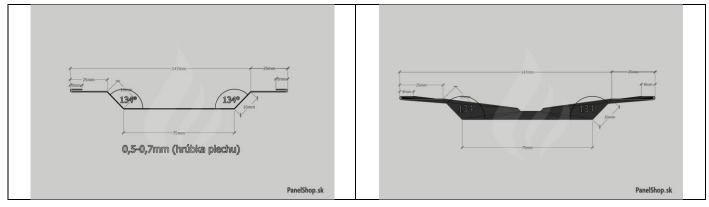
You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

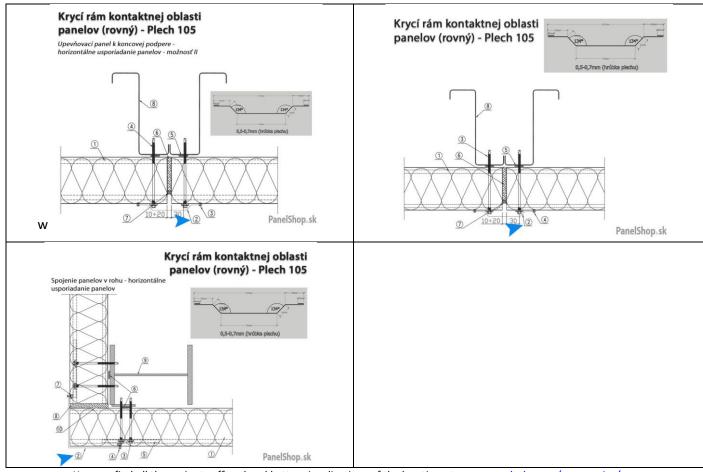

Flashing - (11.1) Outer corner with hidden joint - Sheet_103 Product code: PO11_01_xxx



You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

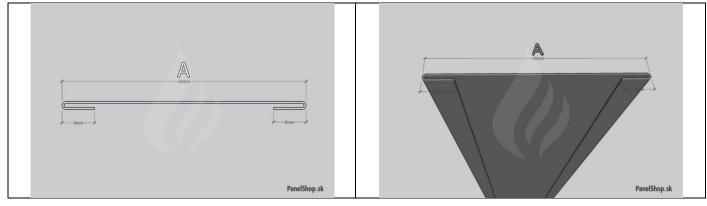
Flashing – (12.1) Inner strip – Sheet_104

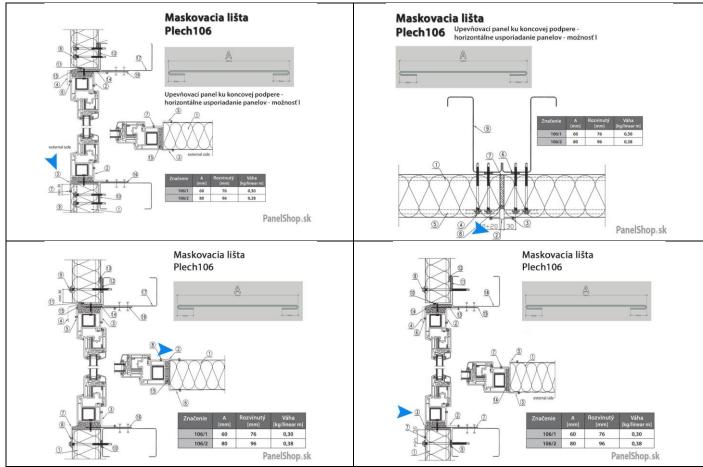

Product code: PO12_01_xxx



You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

Flashing - (13.1) Covering frame of the contact area of the panels straight - Sheet_105 Product code: PO13_01_xxx

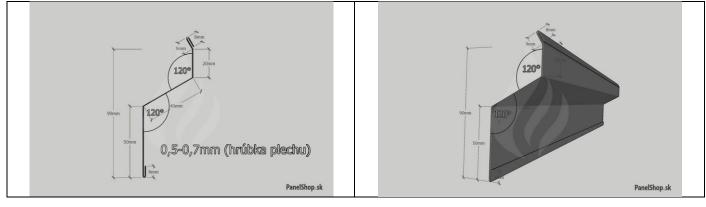


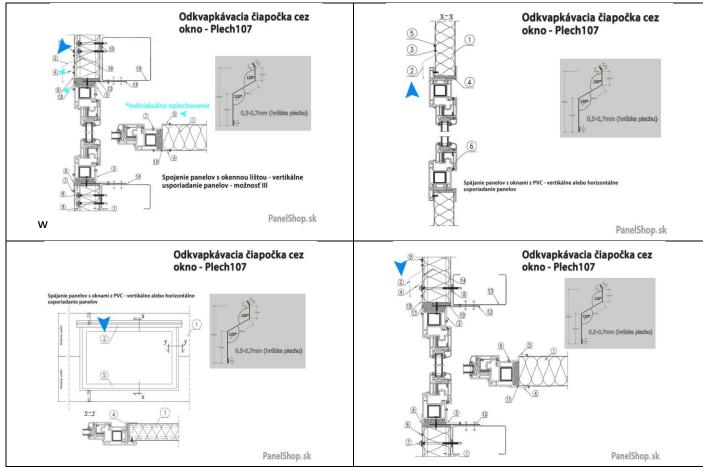


You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

Flashing – (14.1) Masking strip – Sheet_106

Product code: PO14_01_xxx

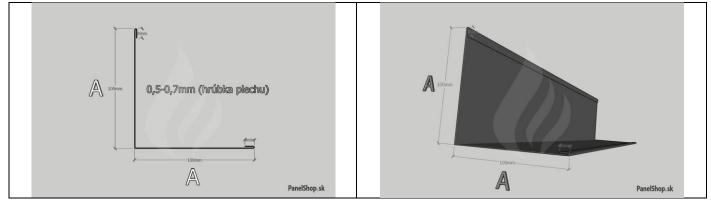


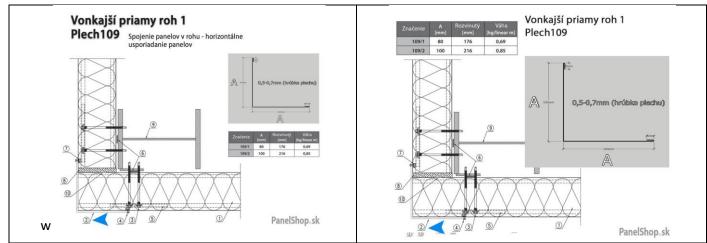


You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

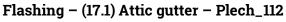
Flashing – (15.1) Drip cap through the window – Sheet metal_107

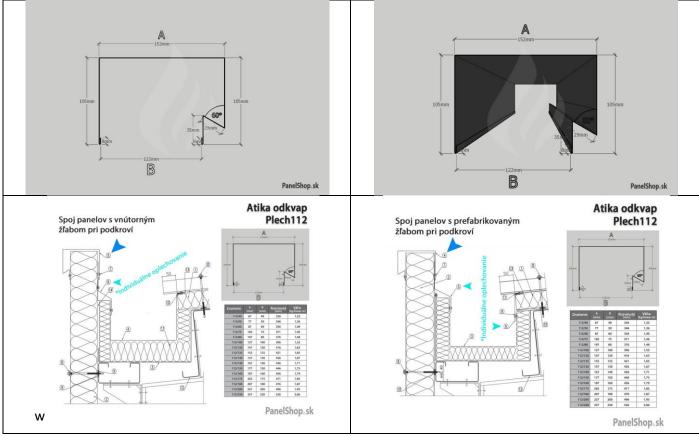
Product code: PO15_01_xxx




You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

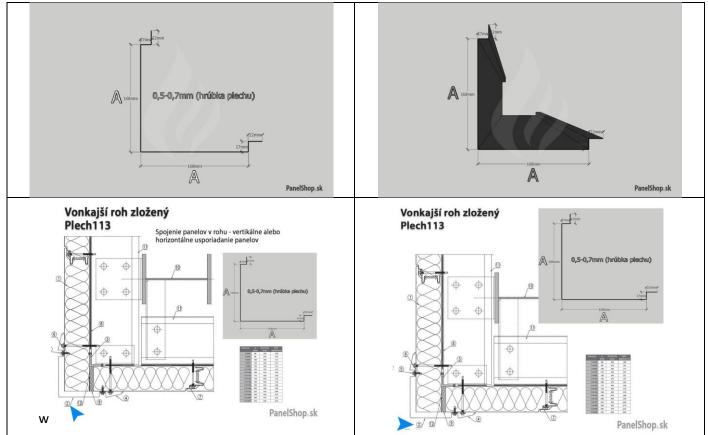
Flashing – (16.1) External right corner – Sheet_109


Product code: PO16_01_xxx



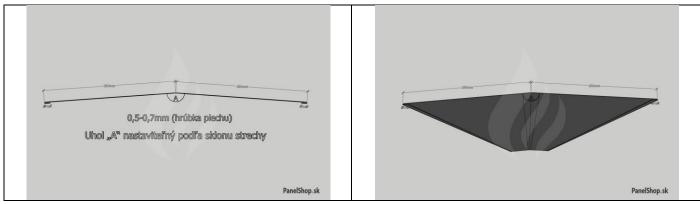
Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

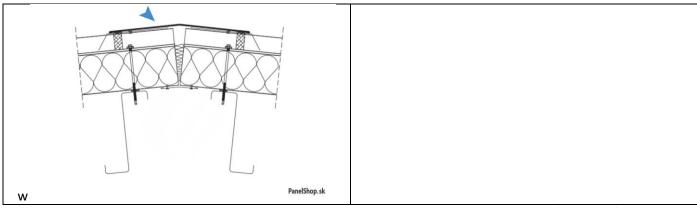
You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/



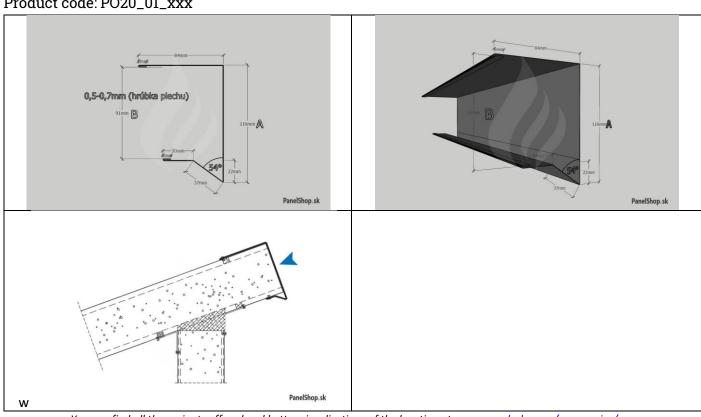
Product code: PO17_01_xxx

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

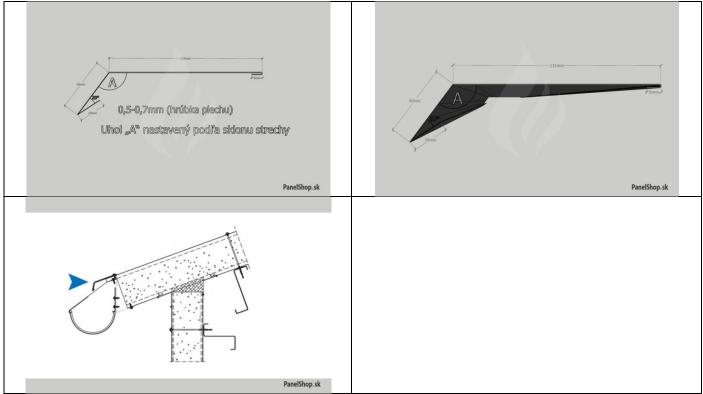

Flashing - (18.1) Outer corner folded - Sheet_113 Product code: PO18_01_xxx



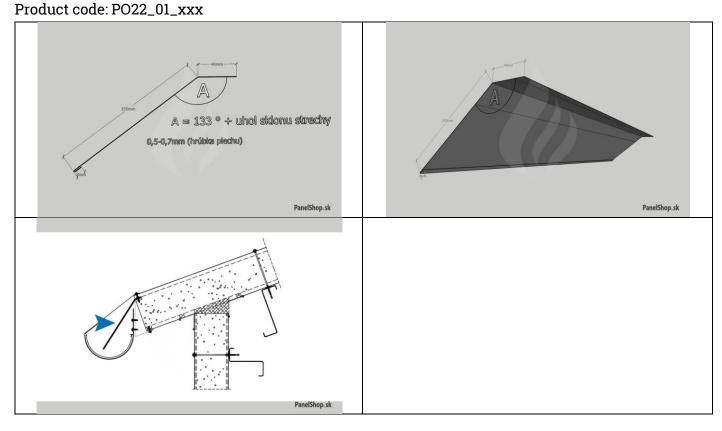
You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>


Flashing– (19.1) Ridge of a flat external roof ridge cladding – Sheet metal_205

Product code: PO19_01_xxx

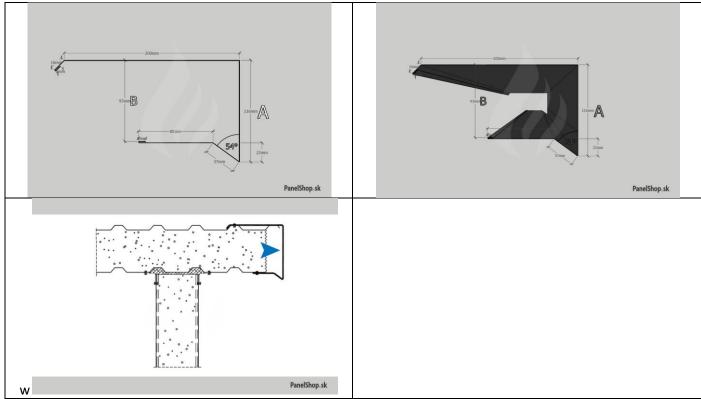

You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

Flashing- (20.1) Masking frame of the comb - Sheet metal_53 Product code: PO20_01_xxx


You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

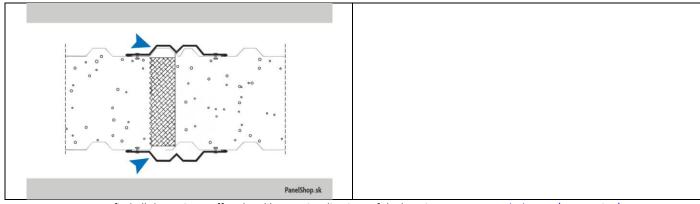
Flashing - (21.1) Drip cap above gutter - Sheet metal_54 Product code: PO21_01_XXX

You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/


Flashing – (22.1) Gutter plating – Sheet_59

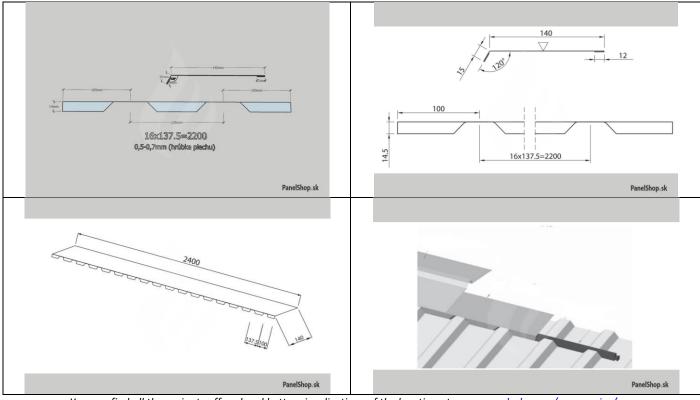
You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

Flashing – (23.1) Wind blade – Sheet metal_60

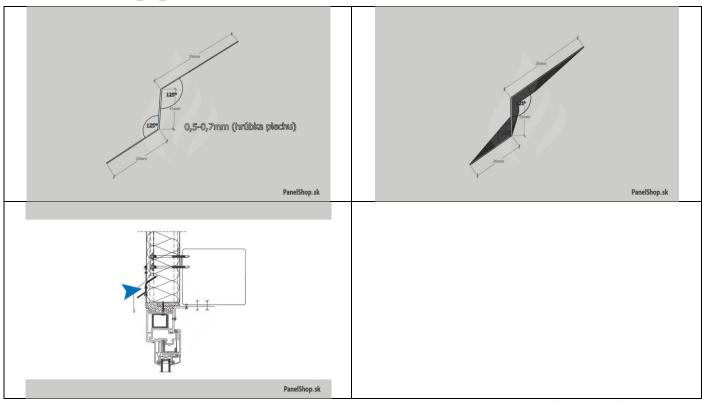

Product code: PO23_01_xxx

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

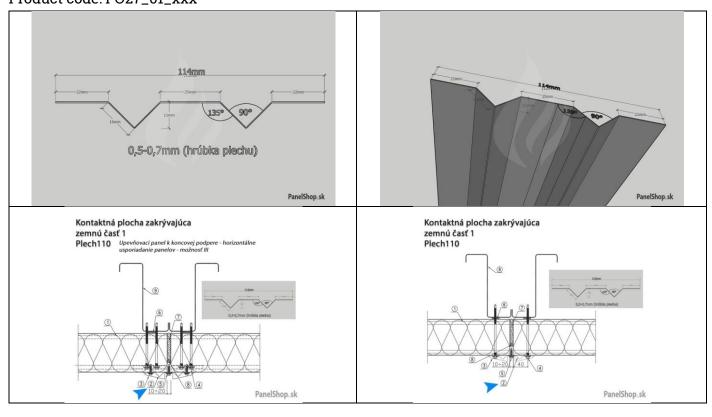
Flashing - (24.1) Roof expansion joint - Sheet metal_64 Product code: PO24_01_xxx



You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>


Flashing – (25.1) Roof ridge strip – Sheet_65

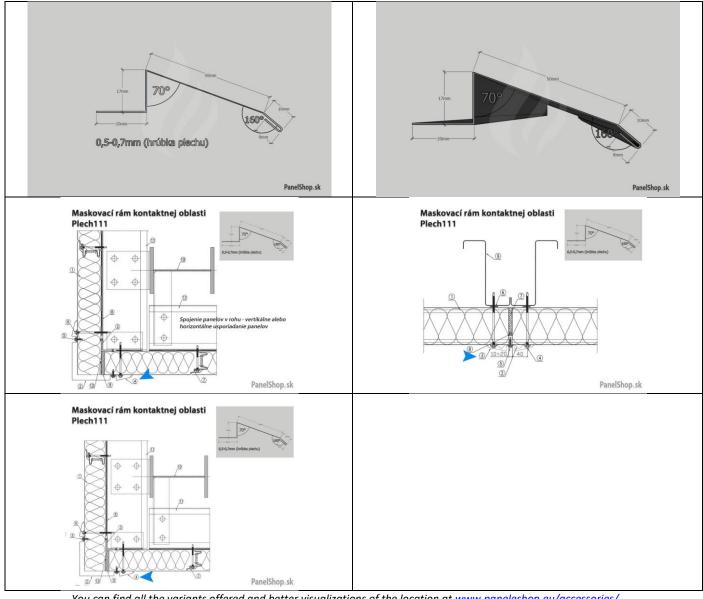
Product code: PO25_01_xxx


You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

Flashing – (26.1) Drip through the window lock seal – Sheet metal_108 Product code: PO26_01_xxx

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

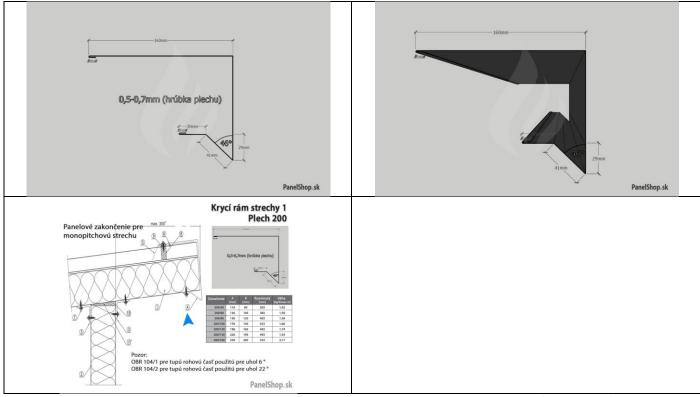
Flashing – (27.1) Contact surface covering the ground part – Sheet_110 Product code: PO27_01_xxx



paneleshop.eu

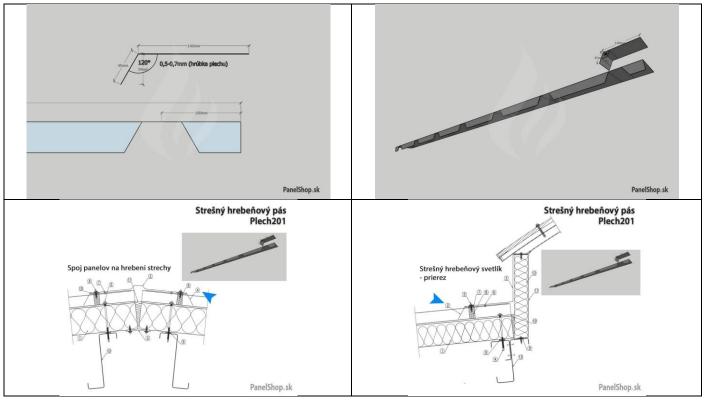
You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

Flashing – (28.1) Masking frame of the contact area – Sheet metal_111

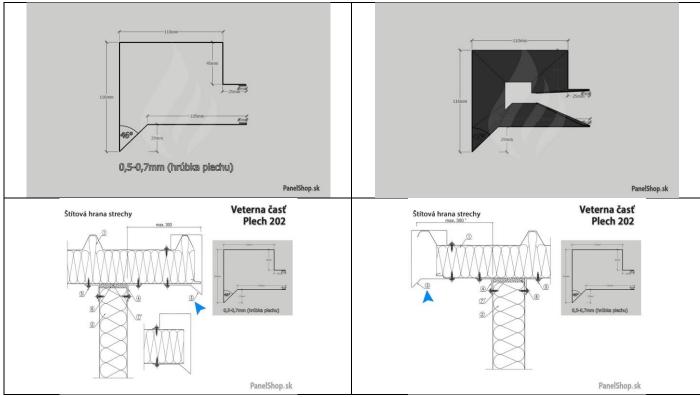

Product code: PO28_01_xxx

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

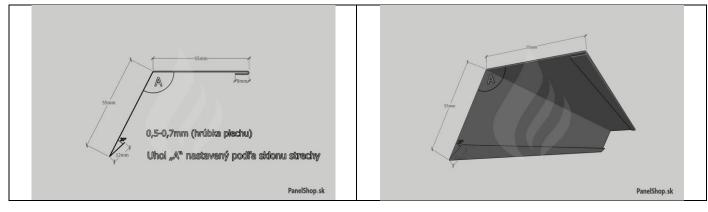
Flashing – (29.1) Roof covering frame – Sheet_200


Product code: PO29_01_xxx

Ponúkané všetky varianty a kvalitnejšie vizualizácie umiestnenia nájdete na www.panelshop.sk/prislusenstvo/


Flashing - (30.1) Roof ridge strip - Sheet_201

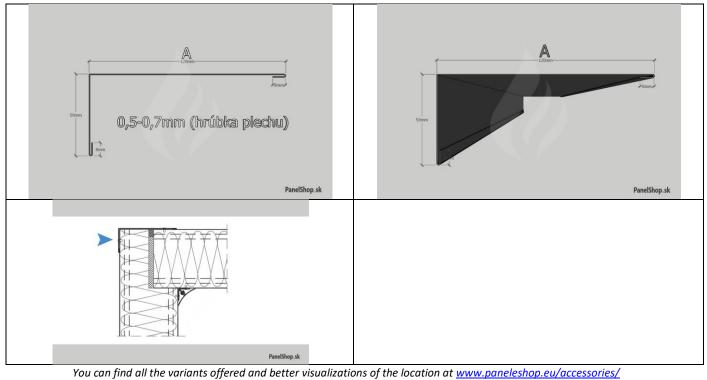
Product code: PO30_01_xxx

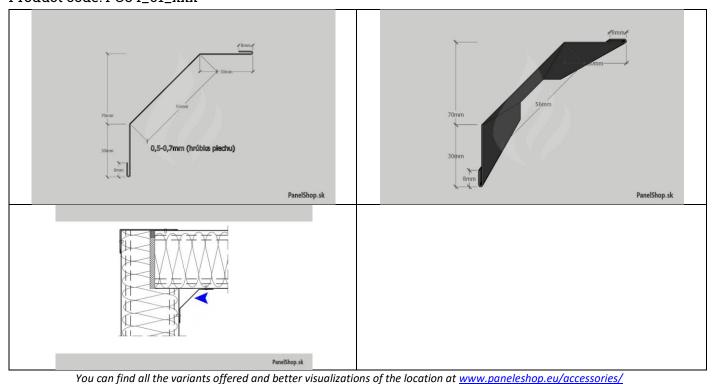

134 paneleshop.eu You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

Flashing- (31.1) Wind part - Sheet metal_202 Product code: PO31_01_xxx

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

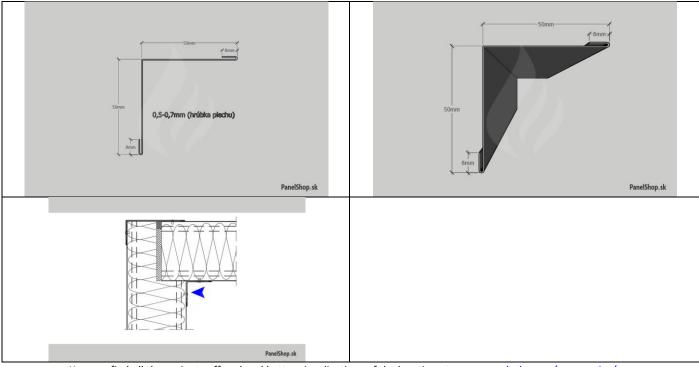
Flashing - (32.1) Drip cap above gutter - Sheet metal_203 Product code: PO32_01_xxx




You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

Flashing - (33.1) Outer corner - Sheet metal_301

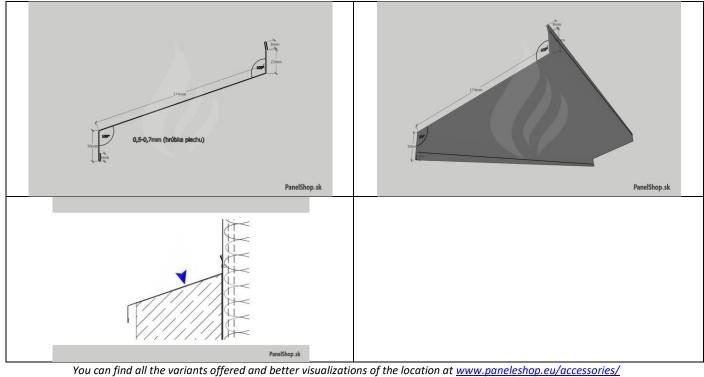
Product code: PO33_01_xxx



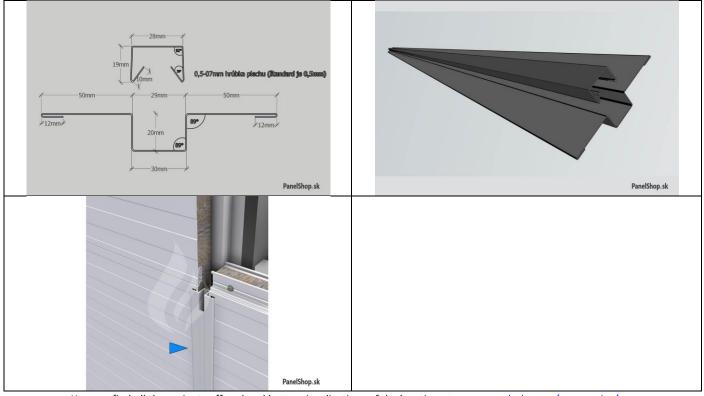
Flashing – (34.1) Internal oblique corner – Sheet_302 Product code: PO34_01_xxx

Flashing – (35.1) Straight inner corner – Sheet metal_303

Product code: PO35_01_xxx



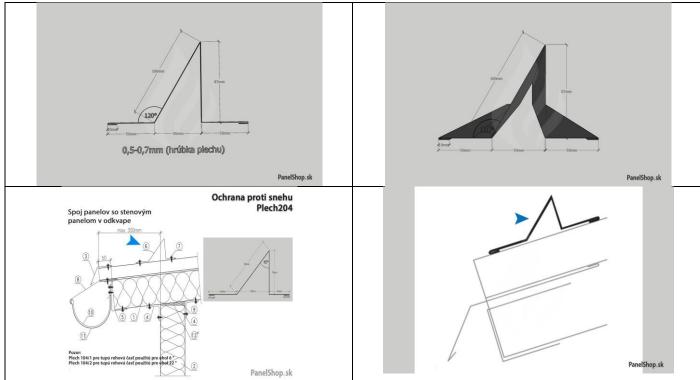
You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/


Flashing - (36.1) Drip cap - Sheet_304

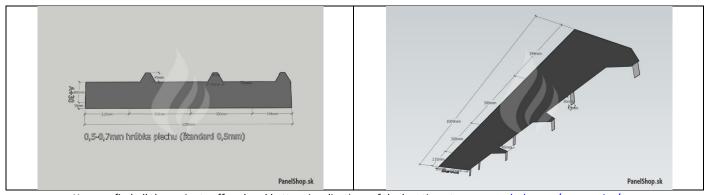
Product code: PO36_01_xxx

Flashing - (37.1) Vertical joint - Sheet metal_D01

Product code: PO37_01_xxx

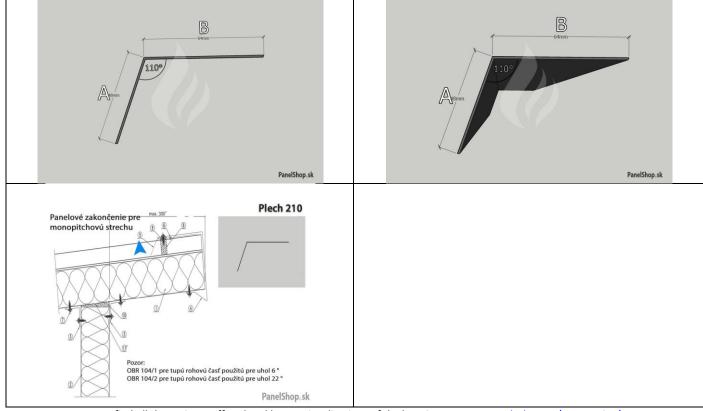


You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

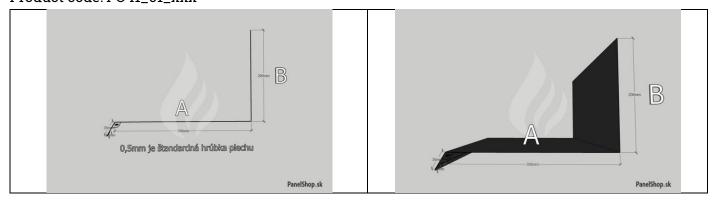

Snow protection (38.1) – Sheet_204

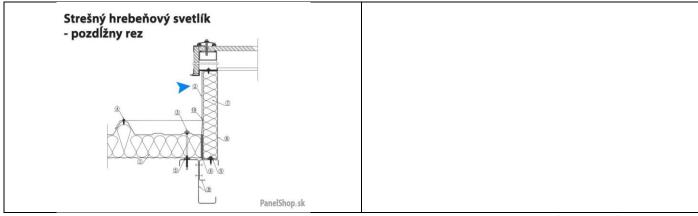
Product code: PO38_01_xxx

You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/


Completion of the panel in the gutter with edging (39.1) – Sheet_206 Product code: PO39_01_xxx

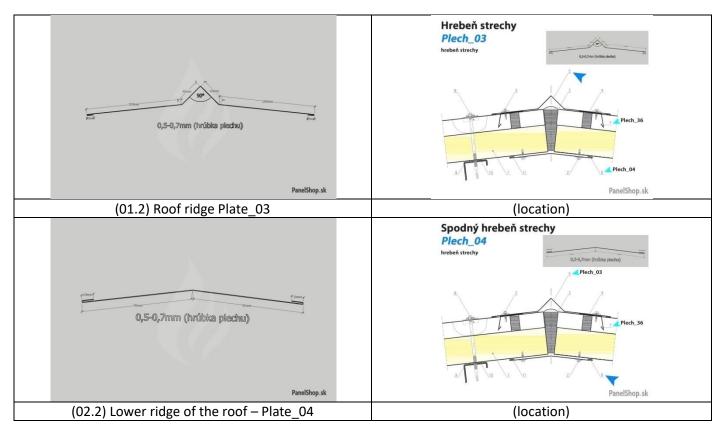
You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/


Additional roof (40.1) - Sheet_210


Product code: PO40_01_xxx

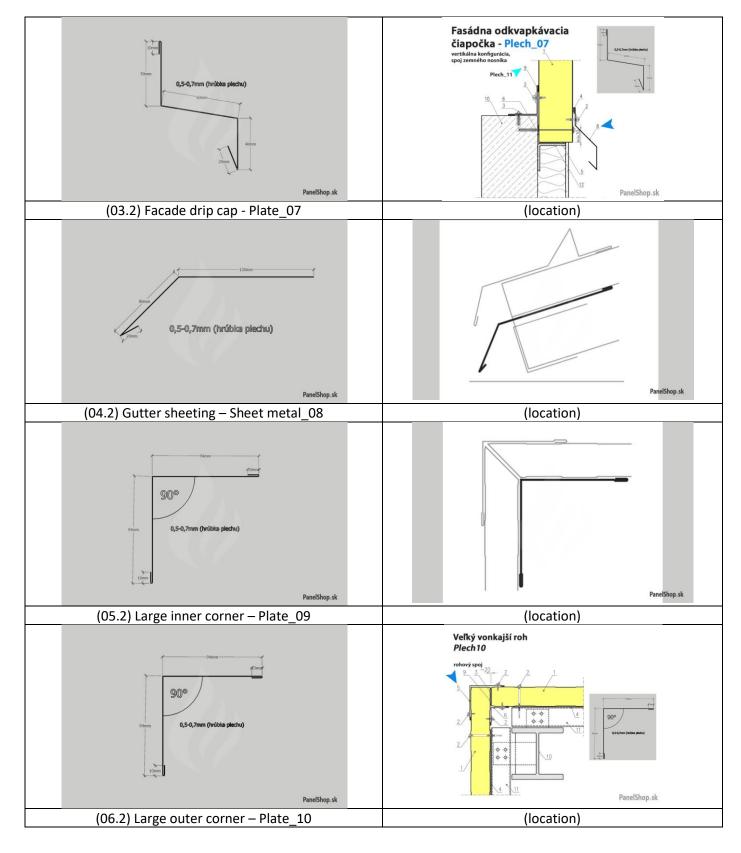
You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

Roof ridge skylight (41.1) Product code: PO41_01_xxx

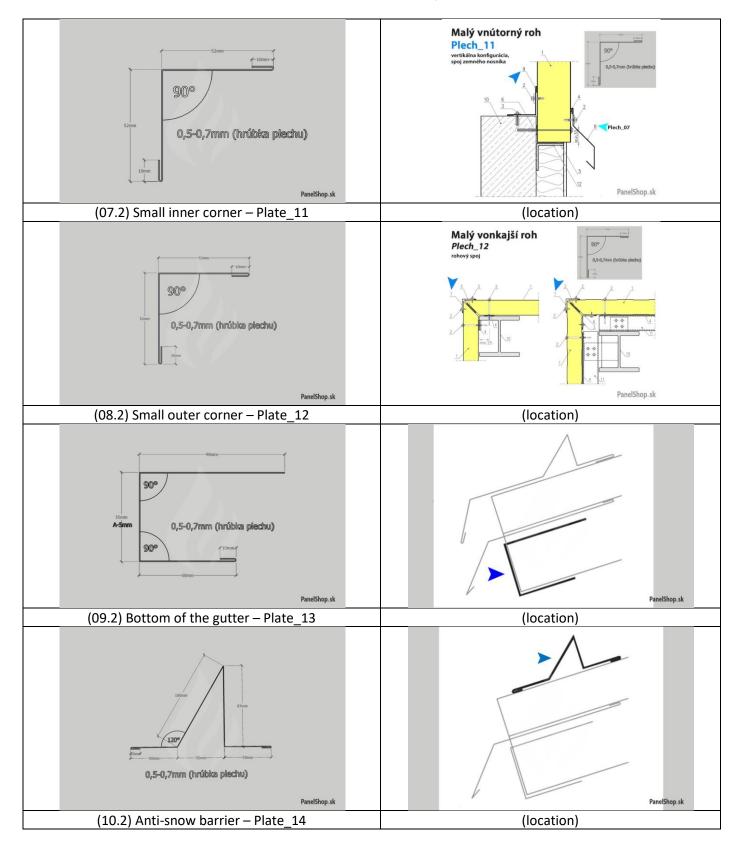


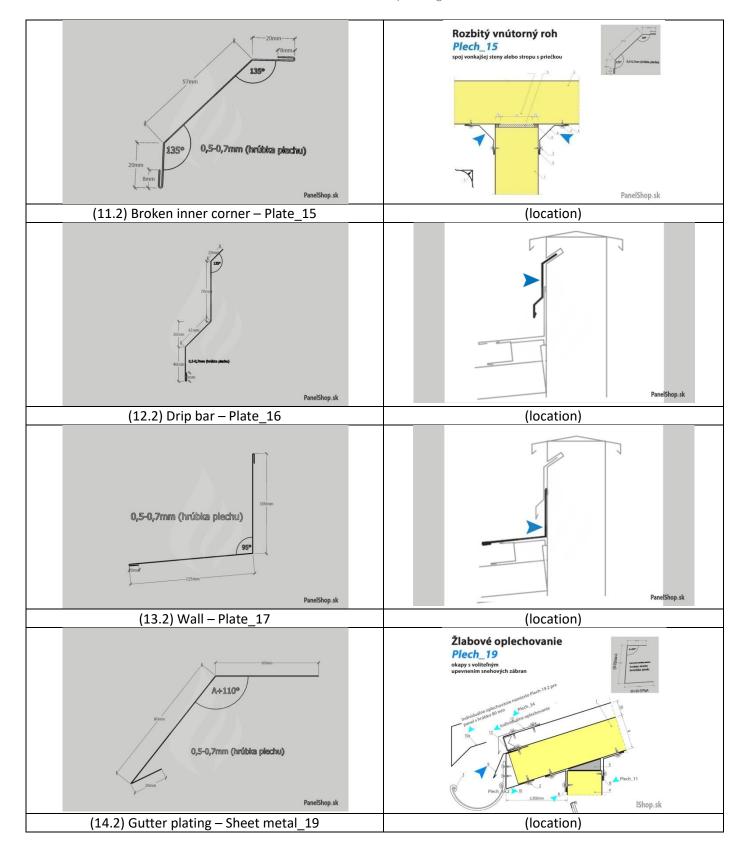
You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

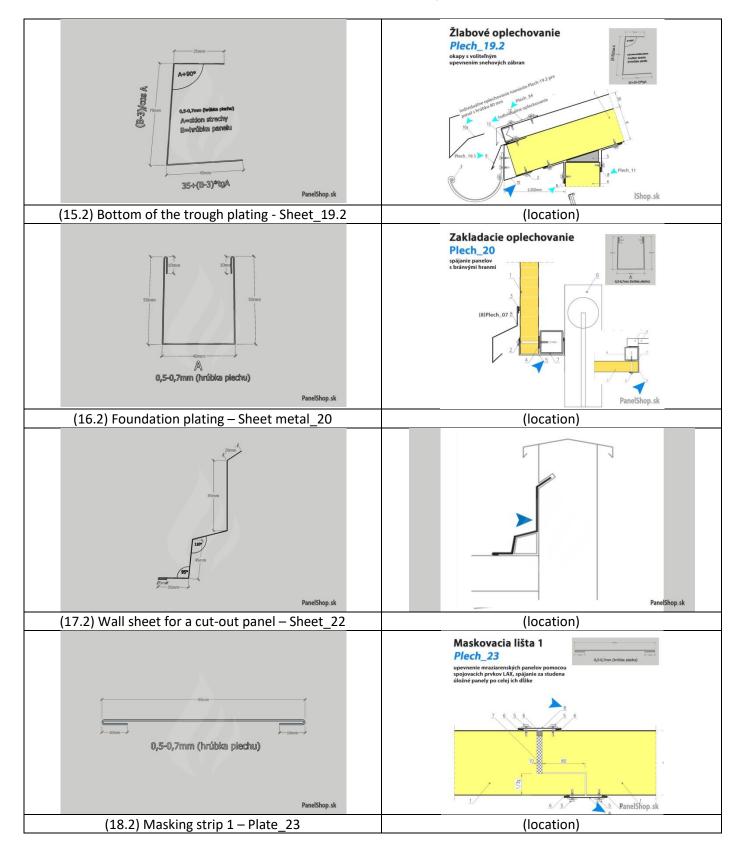
Plating elements (second group, 33 pcs.)

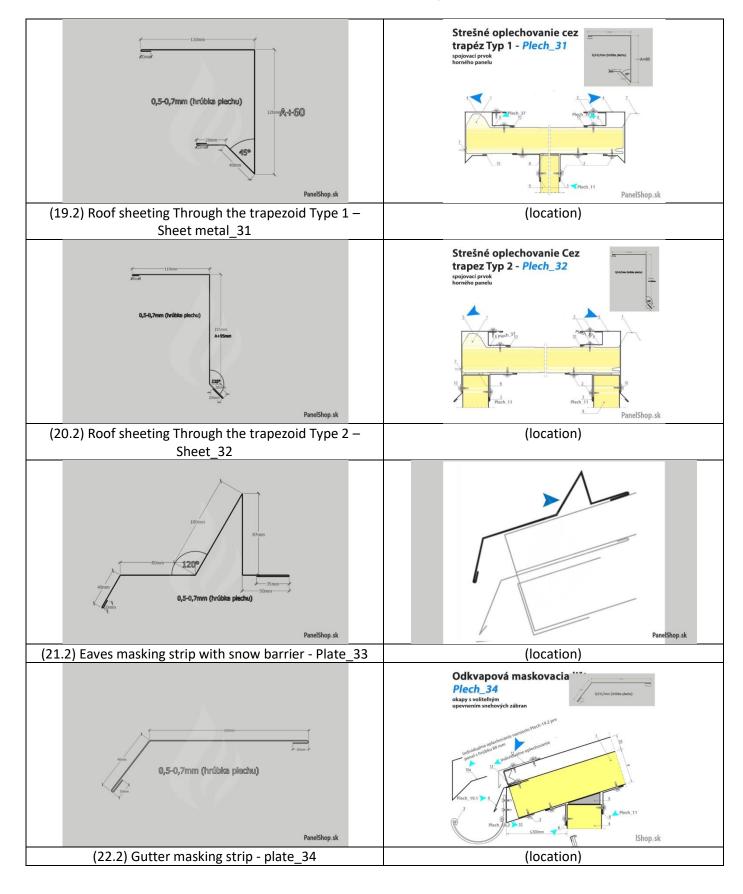

We offer two types of plating elements: 41 pcs and 33 pcs. The possibility of entering your own parameters. We have prepared visualizations of the cladding element and placement examples. Larger images can be found at www.paneleshop.eu in the accessories section.

You can find all the variants offered and better visualizations of the location at <u>www.paneleshop.eu/accessories/</u>

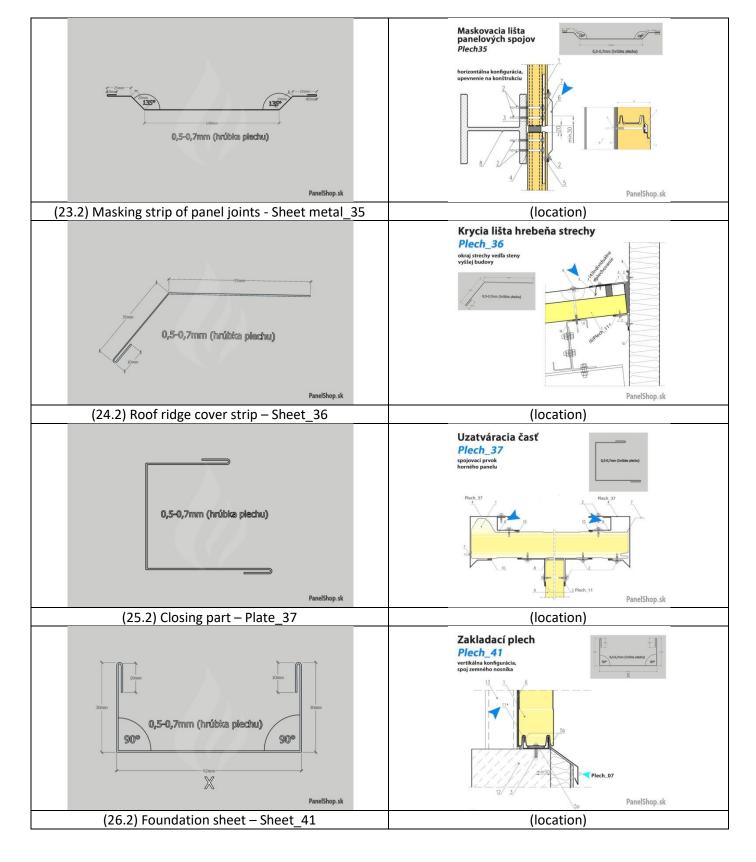

paneleshop.eu

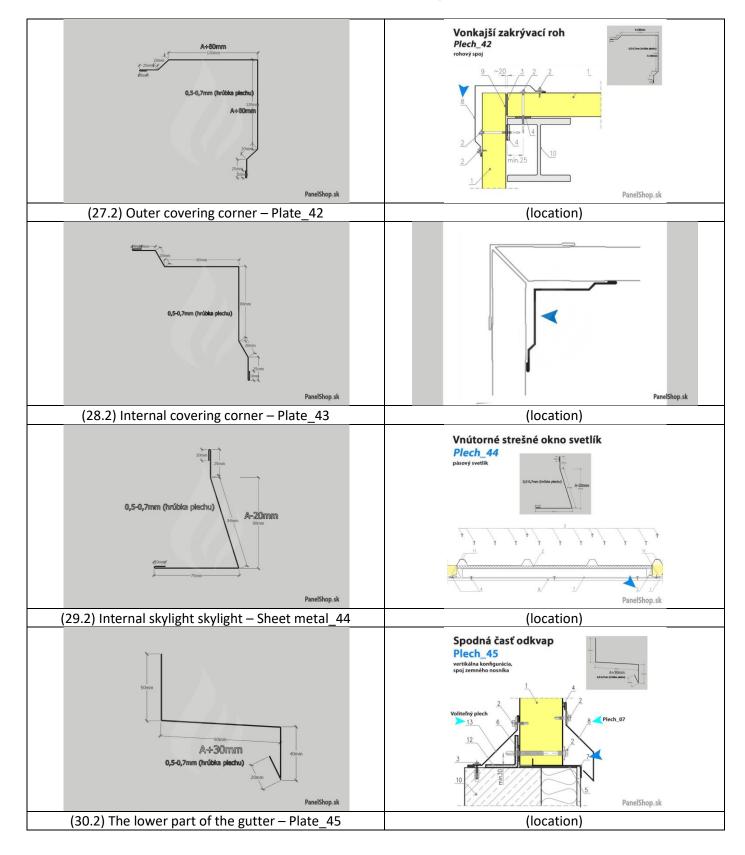

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

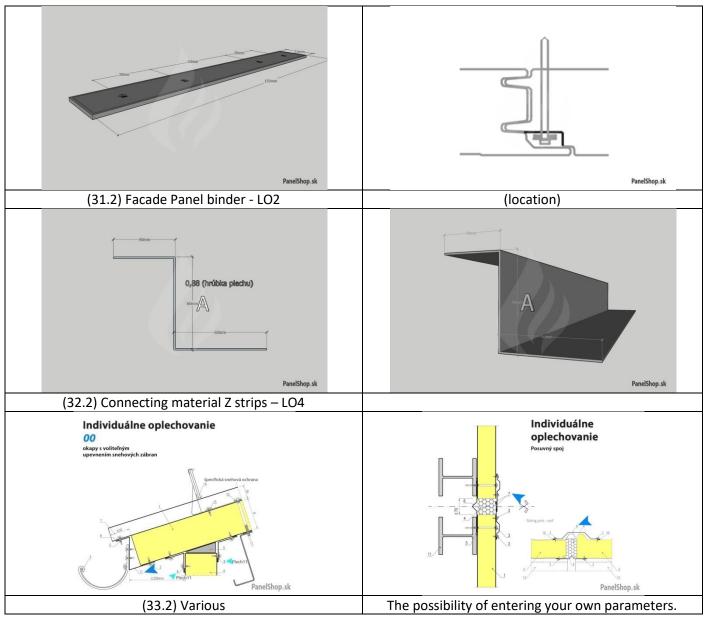




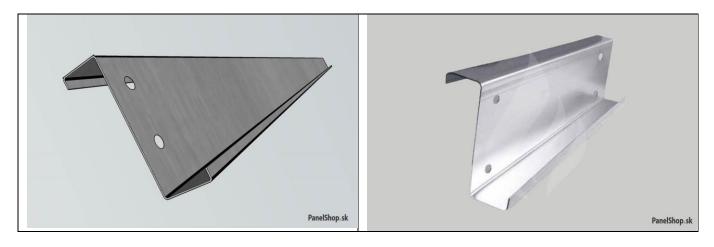
Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, & paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

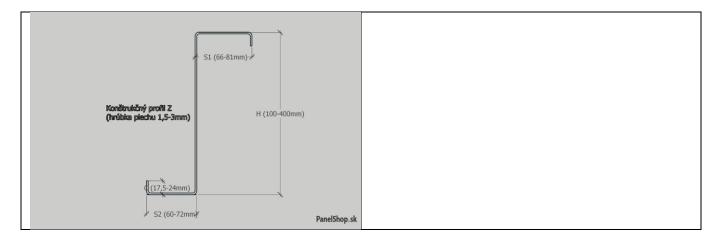

Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00



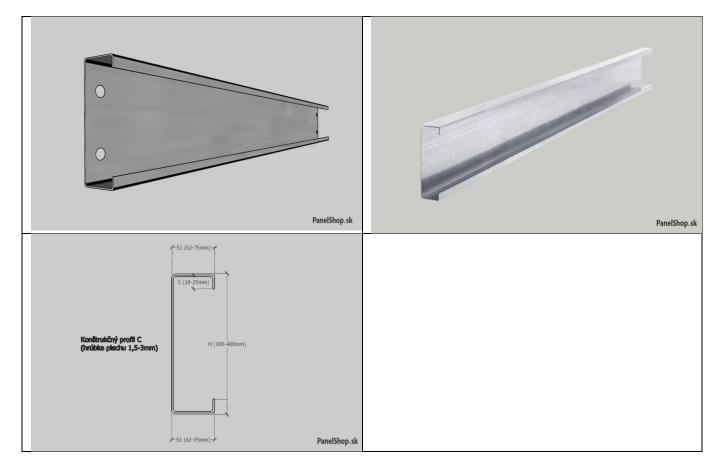


You can find all the variants offered and better visualizations of the location at www.paneleshop.eu/accessories/

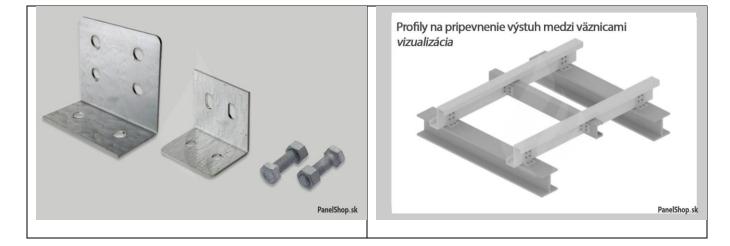

Thin-walled structural profiles


Thin-walled cold profiles

Thin-walled cold profiles are intended for use primarily as cages for ceilings, roofs and walls of steel halls. Thin-walled profiles are available as standardized Z, C and Sigma profiles. Pre-punched holes allow precise and quick assembly. These profiles are used as prisons and wings for all types of halls.



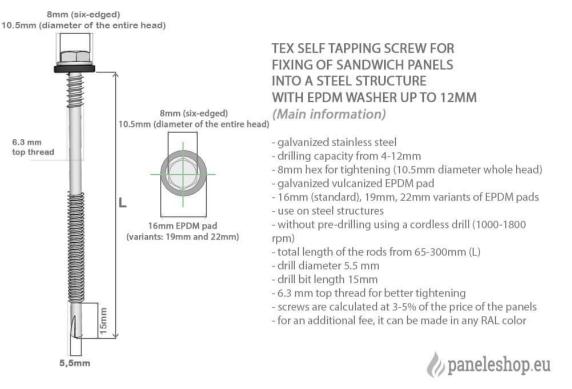
Structural Z profile (thin-walled purlins)



Structural C profile (thin-walled purlins)

Accessories for structural profiles

Structural Sigma profile (thin-walled purlins)


Telephone: +421 910 107 878, Email: mailto: info@paneleshop.eu, www.paneleshop.eu, @paneleshop.eu Operating hours of the customer line: Po – Pi: 8:00 – 16:00

Self-tapping screws, calots, sealing tapes

Learn more about these important elements

Self-tapping screws for sandwich panels (screws)

TEX self-tapping screws are used to fasten sandwich panels to a steel, wooden or concrete structure. Self-tapping screws are made of noble galvanized or stainless steel (more expensive version) with an EPDM pad. Both roof and wall panels can be fastened without pre-drilling, except for installation in a concrete structure, where a classic dowel with pre-drilling is used.

The diameter of the screw is 5.5 mm, the width of the head is 8 mm hexagon (10.5 mm diameter of the whole head), the length of the drill bit is 15 mm. The lengths of the screws are from 65-300mm from the drill bit to the head. The EPDM pad is made of vulcanized galvanized steel or stainless steel in sizes 16mm, 19mm and 22mm.

The drilling capacity is up to 6 mm and up to 12 mm. The screws are drilled using a battery-powered drill (1000-1800 rpm) without pre-drilling, except for fastening to concrete. In practice, the minimum length of the thread-forming screw is determined as the sum of the thicknesses of all materials to be fastened +20-30 mm.

Screws are calculated at 3-5% of the price of the panels (when estimating the quantity). For an additional fee, it can be made in any RAL color. The approximate price is €0.55 without VAT per piece (155 mm also with washer, galvanized, for iron). In our e-shop you can find for which panel thickness and which length of screw to use.

Self-tapping screws for sandwich panels can be divided into the following groups:

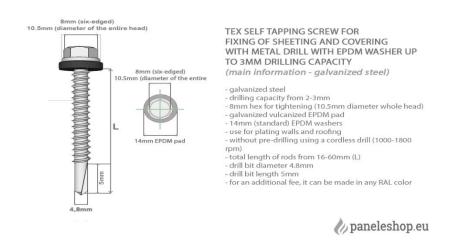
For iron (galvanized, stainless steel)

- Up to 6mm drilling capacity with a smaller drill bit (with washer, without washer)
- Up to 12mm drilling capacity with a larger drill bit (with washer, without washer)

For wood (galvanized, stainless steel)

• Different type of drill bit (with washer, without washer)

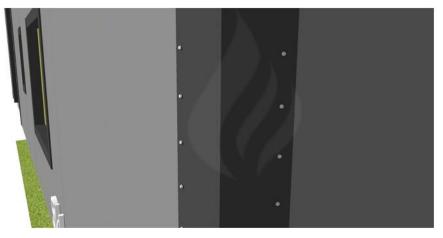
For concrete (galvanized, stainless steel)


• different type of drill (with washer, without washer)

DETAIL UPEVNENIA SAMOREZNEJ SKRUTKY DO OCEĽOVEJ KONŠTRUKCIE

Self-tapping screws for plating and sheathing sandwich panels (staples)

TEX self-tapping screws are used to fasten roofing and wall cladding with a metal drill. Self-tapping screws are made of noble galvanized or stainless steel (more expensive version) with an EPDM washer.



paneleshop.eu

The diameter of the screw is 4.8 mm, the width of the head is 8 mm hexagon (10.5 mm diameter of the whole head), the length of the drill bit is 5 mm. Screw lengths are from 16-60mm. The drilling capacity is from 2-3mm. The EPDM pad is made of vulcanized galvanized steel or stainless steel in dimensions of 14 mm.

The use of the screw is for attaching wall and roof sheets without pre-drilling using a battery-powered drill (1000-1800 rpm). Screws are calculated at 1-2% of the price of the panels (when estimating the quantity). For an additional fee, it can be made in any RAL color

DETAIL UPEVNENIA OPLECHOVANIA S POMOCOU SAMOREZNEJ SKRUTKY DO 3MM

(Oplechovanie vonkajšieho rohu na sendvičový panel. Obrázok montovaného skladu.)

PanelShop.sk

Self-tapping screws for sheet metal can be divided into the following groups:

to iron (galvanized, stainless steel)

- up to 3 mm drilling capacity with a smaller drill bit (with washer, without washer)
- up to 6 mm drilling capacity with a larger drill bit (with washer, without washer)
- up to 12 mm drilling capacity with a larger drill bit (with washer, without washer)

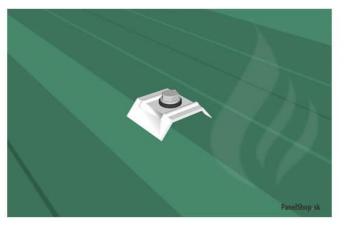
for wood (galvanized, stainless steel)

• different type of drill (with washer, without washer)

For concrete (galvanized, stainless steel)

• different type of drill (with washer, without washer, with dowel)

Calots for roof sandwich panels

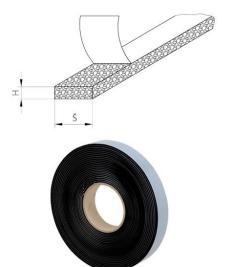

They are used to fasten roof sandwich panels to steel or wooden supporting structures. They are made of painted aluminum. Standard color RAL 9002. They are used together with standard self-tapping screws with a recommended 16mm washer. We offer all RAL colors for an additional fee.

PanelShop_sk

It is necessary to know the width of the dome and the angle of inclination in degrees. The required width of the cap is determined by measuring the width of the upper wave of the trapezoid (IIIv) plus +1mm. The required coal can be determined according to the width of the upper wave, the height of the profile and the clear width of the upper wave.

DETAIL OF THE MOUNTING OF THE COVER TO THE ROOF PANEL TOGETHER WITH A SELF-TAPPING SCREW

(Image of roof panel with dome attachment)


// paneleshop.eu

EPDM sealing tape

It is used for fast, effective and aesthetic sealing of gaps in sheet metal coverings and sealing of hard metal-to-metal joints in prefabricated buildings in metal constructions. Provides protection against water penetration, ageing, UV radiation, temperature, dust, drafts, humidity and thermal bridges. It is suitable for both interior and exterior use.

Tape thicknesses are from 2 to 10mm and widths are from 6-80mm. One roll is 10m long. It is applied directly to the substrate with a pressure roller at a temperature of +5 °C to +35 °C.

EPDM TESNIACA PÁSKA (hlavné informácie)

-rýchle, účinné a estetické utesnenie špár

- oplechovanie krytín, tesnenie spojov kov na kov,
- montované stavby, kovové konštrukcie - ochrana proti prenikaniu vody, starnutiu, UV žiareniu,
- teplote, prachu, prievanu, vlhkosti a tepelným mostom
- aplikácia priamo na podkladovú plochu s prítlačným
- valčekom pri teplote +5 ° C až +35 ° C.
- hrúbky (H) od 2 do 10mm a šírky (Š) sú od 6-80mm
- vhodná do interiéru aj exteriéru

- rolka je dlhá 10m

PanelShop.sk

Customer service

Telephone: +421 944 107 878 Email: obchod@paneleshop.eu

Operating hours of the customer line: Mo – Fr: 8:00 – 16:00 Sa – Su: zatvorené

Head Office

Company Name: I – TRADING, s.r.o. Headquarters address: M.R.Štefánika 2265, 026 01 Dolný Kubín Billing address: Slnečná 2289/10, 026 01 Dolný Kubín

> ID number: 45 436 631 VAT: SK 202 298 1312 Account: SK53 0900 0000 0003 2426 4520

We are also on social networks

paneleshop.eu